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Abstract

We can build flexible predictive models for
rich continuous-time event data by combining
the framework of temporal point processes
(TPP) with (recurrent) neural networks. We
propose a new neural parametrization for
TPPs based on the conditional quantile func-
tion. Specifically, we use a flexible mono-
tonic rational-quadratic spline to learn a
smooth continuous quantile function. Con-
ditioning on historical events is achieved
through a recurrent neural network. This
novel parametrization provides a flexible yet
tractable TPP model with multiple advan-
tages, such as analytical sampling and closed-
form expressions for quantiles and prediction
intervals. While neural TPP models are of-
ten trained using maximum likelihood esti-
mation, we consider the more robust con-
tinuous ranked probability score (CRPS).
We additionally derive a closed-form expres-
sion for the CRPS of our model. Finally,
we demonstrate that the proposed model
achieves state-of-the-art performance in stan-
dard prediction tasks on both synthetic and
real-world event data.

1 Introduction

Discrete events happening at irregular intervals, also
called continuous-time event data, occur across many
scientific fields and applications. Examples include
electronic health records, consumer purchases, finan-
cial transactions and server logs. Figure 1 shows an ex-
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ample of ten event sequences for a real-world dataset.
It is of great interest in all of these areas to learn mod-
els which can capture the influence of past events on
future ones to carry out subsequent prediction, recom-
mendation or intervention.
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Figure 1: Ten sequences of event times.

There has been significant amount of prior work on
modeling such data (Hawkes, 1971) under the frame-
work of temporal point processes (TPP) (D. J. Daley,
2003). However, the strong parametric assumptions
and restrictions of these models - which limit their
flexibility for modeling complex real-world dynamics -
have motivated the development of neural TPP models
(Shchur et al., 2021). By combining the TPP frame-
work with deep neural networks, neural TPP models
provide a flexible framework for modeling continuous-
time event data and have become the current state-of-
the-art for predictive modeling with such data.

Recurrent neural TPP models are autoregressive mod-
els which characterize the conditional distribution of
the next arrival time in a TPP. Various representa-
tions of this distribution have been proposed in the
literature, including parametric forms for the inten-
sity function (Mei and Eisner, 2017), the cumulative
intensity function (Omi et al., 2019), and the proba-
bility density function (Shchur et al., 2020a). While a
TPP can be equivalently characterized by one of these
functions, choosing which function to parametrize and
how to train the associated model are important de-
sign choices (Shchur et al., 2021).
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We make the following main contributions:

1. We propose a new neural parametrization for
TPPs based on the conditional quantile func-
tion. Specifically, we learn a smooth contin-
uous quantile function represented by a mono-
tonic rational-quadratic spline (RQS) (Durkan
et al., 2019). Conditioning on historical events
is achieved through a recurrent neural network
(RNN). This novel parametrization leads to a flex-
ible yet tractable neural TPP model with many
advantages over the existing density-based neural
TPP models. In fact, quantiles are optimal pre-
dictions for a large class of loss functions that arise
in many real-world prediction problems (Gneit-
ing, 2011). Also, a closed-form expression for
the quantile function enables analytical sampling.
Furthermore, our model has closed-form expres-
sions for quantiles, prediction intervals as well as
the expectation. This allows us to avoid expen-
sive sampling-based approximations. In fact, an-
alytical sampling is not possible with the neural
model proposed by Omi et al. (2019) and the mix-
ture model of Shchur et al. (2020a) does not have
a closed-form quantile function.

2. While traditional density-based neural TPP mod-
els are trained using maximum likelihood estima-
tion (MLE), we train our model by minimizing the
more robust continuous ranked probability score
(CRPS) (Gneiting et al., 2007). Importantly, we
derive an analytical expression for the CRPS of
our model which enables more efficient parameter
optimization.

3. We show through a range of experiments that the
proposed model provides state-of-the-art results
on both synthetic and real-world event sequence
datasets.

2 Background

Temporal point processes (TPPs) are stochastic
processes whose realization is a sequence of N arrival
times S = {t1, t2, . . . , tN} in some time interval [0, T ],
where 0 < t1 < t2 < · · · < tN ≤ T , and the number
of events N is random (D. J. Daley, 2003). TPPs can
be equivalently represented using inter-arrival times
τi = ti − ti−1 for i = 1, . . . , N + 1 with t0 = 0 and
tN+1 = T . We will use the two representations inter-
changeably throughout the paper. Examples of TPPs
include Poisson processes, where events are indepen-
dent from each other (Aalen et al., 2008), and Hawkes
processes, where the occurrence of events depends on
the past history of the process, with specific dynamics
such as self-excitation (Hawkes, 1971).

It is of particular interest to many applications to
predict the arrival time of future events from histori-
cal observations. This requires modelling the depen-
dency between the next arrival time t and the history
Ht = {tj : tj < t}. TPPs can be uniquely charac-
terized by the (strictly positive) conditional intensity
function λ∗(t) = λ(t|Ht) which gives the arrival rate
of new events conditional on the history Ht

1.

TPP model parametrization. While intensity
parametrization is popular for TPP modelling (Zhou
et al., 2013; Zhang et al., 2019; Zuo et al., 2020),
TPPs can also be characterized by the distribution
of the next arrival time given Ht, which we denote
P ∗(t). We can represent such distribution using dif-
ferent functions (Shchur et al., 2021), including the
cumulative distribution function (CDF) F ∗(t), the
probability density function (PDF) f∗(t), the survival
function S∗(t) = 1 − F ∗(t), the intensity function
λ∗(t) = f∗(t)/S∗(t) or the cumulative intensity func-

tion Λ∗(t) =
∫ t

0
λ∗(s) ds. One can define a TPP model

by picking a parametric form for any of these func-
tions, provided that the chosen parametrization de-
fines a valid probability distribution. While any para-
metric form can be used, neural network parametriza-
tions provide more flexibility and allow to capture
more complex real-world dynamics and dependencies
(Du et al., 2016; Shchur et al., 2020a; Mei and Eisner,
2017; Omi et al., 2019) .

TPP model training. Given a valid parametriza-
tion of one of the above functions, the most common
approach to train neural TPP models is via MLE,
or equivalently by negative log-likelihood (NLL) mini-
mization. For example, given a parametrization of the
intensity function, λ∗

θ(t), the PDF f∗
θ (t) or the CDF

F ∗
θ (t), and a sequence of events S, the NLL objective

is given by (Rasmussen, 2018)

L(θ;S) = −

N∑

i=1

log λ∗
θ(ti) +

∫ T

0

λ∗
θ(s)ds (1)

= −
N∑

i=1

log f∗
θ (τi)− log (1− F ∗

θ (T )) , (2)

where θ ∈ Θ ⊆ R
d is a vector of parameters.

Choosing which function to parametrize is an impor-
tant design choice especially for model training. For
example, if λ∗

θ(t) does not have an analytical integral,
computing L(θ;S) in (1) will require numerical inte-
gration which can be computationally expensive and
can lead to poor accuracy. If instead we parametrize
Λ∗(t), L(θ;S) is simpler to compute using differentia-
tion (Omi et al., 2019).

1The * symbol denotes the dependence on the history
(Rasmussen, 2018).
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3 Quantile function parametrization

for TPPs

We present a new neural TPP model based on the
parametrization of the conditional quantile function.
Let F ∗(τ) be the CDF of the real-valued (continu-
ous) random variable associated to the next inter-
arrival time τ given the history Ht. Assuming F ∗(τ) is
strictly increasing, the quantile function is the inverse
of F ∗(τ), given by Q∗(α) = F ∗−1(α) where α ∈ [0, 1).
In other words, Q∗ : [0, 1) → R+ returns the value
τ such that F ∗(τ) = α. With a quantile function, it
is straightforward to generate samples using inversion
sampling, i.e. by evaluating the quantile function at
uniformly distributed values. Furthermore, a quantile
function can be used to produce prediction intervals
with a specified probability coverage. Finally, quantile
functions of continuous random variables are equivari-
ant under monotonic transformations.

While the quantile function is a useful representa-
tion of a random variable, finding a good neural
parametrization is not trivial. In fact, a useful and
valid parametric form for Q∗(α) should (i) be flexi-
ble enough to approximate any distribution, (ii) define
continuous and strictly increasing functions, and (iii)
have a closed-form expression for computational effi-
ciency. We propose to represent Q∗(α) using a mono-
tonic rational-quadratic splines (RQS) (Gregory and
Delbourgo, 1982; Durkan et al., 2019), which satisfy
the previous three properties. After briefly presenting
RQS, we describe its neural parametrization in Section
3.2. Tail modelling and model training are discussed
in Sections 3.3 and 3.4, respectively. Finally, we derive
a closed-form expression for the CRPS of our model in
Section 3.5.

3.1 Monotonic rational-quadratic splines

A RQS is specified using K different monotonically-
increasing rational-quadratic functions with bound-
aries defined by K + 1 coordinates {(x(k), y(k))}Kk=0,
known as knots, and K + 1 strictly positive values
{δ(k}Kk=0 for the derivatives at the knots (Durkan et al.,
2019).

Let ∆y(k) = y(k+1) − y(k), ∆x(k) = x(k+1) − x(k) and
s(k) = ∆y(k)/∆x(k) for k = 0, 1, . . . ,K − 1. Then,
the expression of the kth rational quadratic for α ∈
[x(k), x(k+1)], or equivalently, for ξ ∈ [0, 1] with ξ =
ξk(α) = (α− x(k))/∆x(k), is given by

rk(ξ) = c
(k)
1 +

c
(k)
2 ξ2 + c

(k)
3 ξ

−c
(k)
4 ξ2 + c

(k)
4 ξ + c

(k)
5

, (3)

where

c
(k)
1 = y(k), c

(k)
2 = ∆y(k)(s(k) − δ(k)), (4)

c
(k)
3 = ∆y(k)δ(k), c

(k)
4 =

[

δ(k+1) + δ(k) − 2s(k)
]

, (5)

c
(k)
5 = s(k). (6)

Note that if c
(k)
4 = 0 and c

(k)
2 ̸= 0, rk(ξ) reduces to

a quadratic function, while if c
(k)
4 = 0 and c

(k)
2 = 0,

rk(ξ) is linear in ξ.

We can analytically invert a rational-quadratic func-
tion by finding the root α of the quadratic equation
τ = rk(ξk(α)). It can be shown that the unique solu-
tion is given by

α = ∆x(k)ξ + x(k), ξ = 2c/(−b+
√

b2 − 4ac), (7)

where

a = c
(k)
2 + c

(k)
4 (τ − c

(k)
1 ), (8)

b = c
(k)
3 − c

(k)
4 (τ − c

(k)
1 ), (9)

c = −c
(k)
5 (τ − c

(k)
1 ). (10)

Finally, the derivative of the rational-quadratic func-
tion in (3) is given by

drk(ξ)

dξ
(11)

=
(s(k))2[δ(k+1)ξ2 + 2s(k)ξ(1− ξ) + δ(k)(1− ξ)2]

[s(k) + c
(k)
4 ξ(1− ξ)]2

.

3.2 Neural quantile TPP model

Building on Gasthaus et al. (2019), we consider a fam-
ily of conditional quantile functions qφ(α|h) indexed
by the vector φ where qφ(α|h) = qθ(h;φ)(α), and qθ(α)
is a family of quantile functions indexed by the vec-
tor θ. In other words, the value of the conditioning
variable h is mapped to the parameters θ with the
mapping θ(h;φ) parametrized by φ.

History embedding. While, in a TPP, the inter-
arrival time of the next event can depend on all the
historical events, a common assumption in neural TPP
models is that event history Ht can be compactly rep-
resented with a vector h ∈ R

H (Shchur et al., 2021).
We make the same assumption and propose to use au-
toregressive neural models with recurrent encoders as
in Du et al. (2016) and Shchur et al. (2020a). Specif-
ically, an initial hidden state is sequentially updated
with each observed event, and the final hidden state
is used as the history embedding. Examples of update
functions include the RNN, GRU or LSTM update
equations (Xiao et al., 2017b; Du et al., 2016). We
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refer the reader to Shchur et al. (2021) for a review on
history embedding in TPPs.

RQS-based quantile functions. We let the
vector θ, with 3(K + 1) components, represent
{(x(k), y(k)), δ(k)}Kk=0, i.e. the knots and the deriva-
tives at the knots for K different rational quadratics.
Such vector defines a RQS on the interval [x(0), x(K)],
as explained in Section 3.1. Then, if (x(0), y(0)) =
(0, 0), we can define a family of quantile functions,
qθ : [0, x(K)] → [0, y(K)], indexed by the parameter θ,
where

qθ(α) =
K−1∑

k=0

✶{α ∈ [x(k), x(k+1)]} rk (ξk(α)) , (12)

where rk is defined in (3).

Gregory and Delbourgo (1982) showed that a RQS
as given by (12) defines a monotonic, continuously-
differentiable function which passes through the knots
{(x(k), y(k))}Kk=0, with the derivatives at the knots
given by {δ(k)}Kk=0. In fact, we can check that

qθ(x
(k)) = y(k) and dqθ(x

(k))
dα = δ(k). Therefore, pro-

vided that δ(k) > 0 in (3) for all k, expression (12)
defines a valid quantile function on [x(0), x(K)]. Fi-
nally, to evaluate the quantile function at location α,
we need to find the bin in which α lies. Since the bins
are sorted, this can be done efficiently using binary
search (Durkan et al., 2019).

Obtaining the parameters. Building on Durkan
et al. (2019), to obtain the parameters θ from the his-
tory embedding h, we first compute an unconstrained
parameter vector θ̃ of length 3K +1 as an affine func-
tion of h, i.e. θ̃ = W̃h + b̃, with W̃ ∈ R

(3K+1)×H

and b̃ ∈ R
3K+1. Then, the vector is partitioned as

θ̃ = [θ̃∆x||θ̃∆y||θ̃d] where θ̃∆x ∈ R
K , θ̃∆y ∈ R

K , and
θ̃d ∈ R

K+1. To obtain the widths and heights of the
bins, we split the unit interval in K intervals by com-
puting θ∆x = softmax(θ̃∆x) and θ∆y = softmax(θ̃∆y).
To obtain the K +1 knots {(x(k), y(k))}Kk=0, it suffices
to compute a cumulative sums of theK bin widths θ∆x

and heights θ∆y, starting at x(0) = 0 and y(0) = 0, re-
spectively. Then, given x(K) and y(K), a mapping is
applied from [0, 1]2 to [0, x(K)]× [0, y(K)]. Strictly pos-
itive derivatives are obtained with θd = softplus(θ̃d),
from which we obtain the values of the derivatives at
each knot {δ(k)}Kk=0.

Useful properties. Representing a quantile func-
tion with a RQS has many advantages. In fact, RQS
are more flexible than quadratic splines, and allow to
match arbitrary values and derivatives of a function at
two boundary knots. As pointed out by Durkan et al.
(2019), with enough bins, a differentiable monotonic
spline defined on a given interval will approximate any
differentiable monotonic function on that interval.

Furthermore, having a closed-form expression for the
quantile function enables analytical sampling, as well
as efficient computation of quantiles and prediction in-
tervals for any specified probability coverage. Also,
since the quantile function is integrable, the expecta-
tion has a closed-form expression (see Appendix C.2).

In addition, each rational-quadratic function defining
the RQS is analytically invertible and has a closed-
form derivative. Therefore, given a quantile function
qθ(·) as defined in (12), closed-form expressions for the
CDF and PDF at location τ can be computed using

Fθ(τ) = q−1
θ (τ), and fθ(τ) = [q−1

θ ]
′

(τ). (13)

Specifically, after identifying the bin in which τ lies,
we can compute q−1

θ (τ) or its derivative by invert-
ing or computing the derivatives of the corresponding
rational-quadratric using (7) and (11), respectively.

A closed-form expression for the CDF allows to com-
pute the probability integral transform (PIT) for cal-
ibration diagnostics, and to efficiently compute the
CRPS (see Section 3.5). Furthermore, unlike the
piecewise linear splines considered by Gasthaus et al.
(2019), RQS define smooth continuous quantile func-
tions with continuous (but not smooth) PDF. Finally,
while we do not train our model using NLL, it is worth
mentioning that a closed-form PDF enables more effi-
cient MLE model training.

3.3 Tail modelling

If x(K) < 1 and y(K) < ∞ in (12) then the property
that Fθ(τ) = q−1

θ (τ) → 1 for τ → ∞ will not be sat-
isfied. This is one of the properties that define a valid
CDF for a continuous random variable 2. We can ex-
trapolate beyond x(K) and the data range using the
quantile function of a known parametric distribution.
Extreme value theory suggests that in many cases the
distribution tails follow a Pareto or exponential distri-
bution.

Specifically, let qγ : [x(K), 1) → [y(k),∞) be a strictly
increasing parametric function with parameters γ ∈ Γ,
which satisfies

qγ(x
(K)) = y(K) and

dqγ(x
(K))

dα
= δ(K), (14)

i.e. qγ matches the value and the derivative of the
spline at x(K). Then, we can define a new fam-
ily of (continuously differentiable) quantile functions

2Rasmussen (2018) pointed out that, if Fθ(τ) → x
(K)

for x(K)
< 1, this means that there is a probability x

(K) to
see new events in the process, and with probability 1−x

(K)

there are no more events, and the process terminates.
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Figure 2: Example of estimated quantile function.

qθ̄ : [0, 1) → R
+, given by

qθ̄(α) =

{

qθ(α), if x(0) ≤ α ≤ x(K)

qγ(α), if x(K) ≤ α < 1
(15)

where θ̄ = [θT ,γT ]T .

To retain all the useful properties of RQS, it is impor-
tant to pick parametric forms of qγ with a closed-form
inverse and derivative. In this work, for simplicity, we
consider the exponential distribution which depends
on a single parameter λ > 0, called rate.

To satisfy the constraints in (14), we can show that
we must have λ = 1/((1−x(K))δ(K)), i.e. the quantile
function for x(K) ≤ α < 1 is given by

qγ(α) = y(K) − δ(K)(1− x(K))log

(
1− α

1− x(K)

)

. (16)

See Appendix C.1 for more details on the above ex-
pression. Finally, if qθ̄ is given by (15), we can now
verify that Fθ̄(τ) = q−1

θ̄
(τ) → 1 for τ → ∞. Figure 2

gives an example of quantile function represented by
our model in (15) with K = 3 and x(K) = 0.95.

In the following, to simplify notations, qθ will refer to
the quantile function defined in (15).

3.4 Model training

Probabilistic models are often trained using proper
scoring rules since they make quoting the true distri-
bution as the predictive distribution an optimal strat-
egy in expectation (Gneiting and Katzfuss, 2014). A
scoring rule is a summary measure of the quality of a
probabilistic forecast which summarizes both calibra-
tion and sharpness (Gneiting et al., 2007). Sharpness
relates to the concentration of the probabilistic fore-
cast, while calibration concerns its statistical consis-
tency with the data. Given a probabilistic forecast G
and an observation τ , a scoring rule computes a score
S(G, τ). It is considered proper if for all possible dis-
tributions G, EP [S(P, τ)] ≤ EP [S(G, τ)] where P is

the true distribution of τ . It is strictly proper when
the equality holds if and only if P = G.

The most common approach to train neural TPP mod-
els is via NLL minimization, which corresponds to the
logarithmic scoring rule

LogS(fθ̄, τ) = −log(fθ̄(τ)).

Since our model parametrization is based on the quan-
tile function qθ̄, we propose to use the continuous
ranked probability score (CRPS), a proper scoring rule
(Gneiting et al., 2007) which can be defined as

CRPS(qθ̄, τ) =

∫ 1

0

QSα (qθ̄(α), τ) dα , (17)

where

QSα (qθ̄(α), τ)

= 2 (✶{τ ≤ qθ̄(α)} − α) (qθ̄(α)− τ) (18)

is the so-called quantile score (Gneiting, 2011).

Both the CRPS and the LogS are proper scoring rules
but with some conceptual differences. The CRPS is
called sensitive to distance, which means it rewards
predictive distributions that place mass close to the
realizing outcome. The LogS is local in the sense that
it only considers the model’s predicted probabilities of
the events that have happened. In the literature, the
choice between these two contrasting features has been
ultimately subjective. See Gebetsberger et al. (2018)
for an empirical comparison of the two scores.

However, a general concern with the LogS is that it
takes large values for low-probability events, meaning
that it is sensitive to outliers, leading Gneiting et al.
(2007) to conclude that the CRPS is an attractive al-
ternative. Furthermore, the quantile score decomposi-
tion of the CRPS can be useful to compare the accu-
racy of different models for different probability levels
and can provide insight into the strengths and defi-
ciencies of a model.

Model training with the CRPS is computationally
more demanding than training with the NLL. Further-
more, while the CRPS of common parametric distri-
butions has a closed form expression (Jordan et al.,
2019), it is often not available for general distribu-
tions. Therefore, one has to numerically approximate
the integral in (17) which can be inefficient when train-
ing large neural network models. Fortunately, in the
next section, we derive a closed-form expression for the
CRPS of our model. See Appendix B for more details
on computational time.

3.5 Computation of the CRPS

Let qθ̄ denote the quantile function in (15), τ ∈ R+ an
observation, and α̃ = q−1

θ̄
(τ). If α̃ ∈ [0, x(K)], we let
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l ∈ {0, 1, . . . ,K − 1} denote the bin where α̃ lies, i.e.
α̃ ∈ [x(l), x(l+1)] and τ ∈ [y(l), y(l+1)].

The CRPS given in (17) can be decomposed as

CRPS(qθ̄, τ)

= τ(α̃−
1

2
)−

∫ 1

0

α qθ̄(α) dα

︸ ︷︷ ︸

A

+

∫ 1

α̃

qθ̄(α) dα

︸ ︷︷ ︸

B

, (19)

where

A =
K−1∑

k=0

[

[∆x(k)]2
∫ 1

0

ξ rk(ξ) dξ (20)

+x(k)∆x(k)

∫ 1

0

rk(ξ) dξ

]

+

∫ 1

x(K)

α qγ(α) dα ,

and

B =







B1(l) +B2 +B3, if 0 ≤ α̃ ≤ x(K−1)

B1(K − 1) +B3, if x(K−1) ≤ α̃ ≤ x(K)

B3. if x(K) ≤ α̃ < 1

(21)
with

B1(l) = ∆x(l)

∫ 1

α̃−x(l)

∆x(l)

rl(ξ) dξ , (22)

B2 =

K−1∑

k=l+1

∆x(k)

∫ 1

0

rk(ξ) dξ , (23)

B3 =

∫ 1

x(K)

qγ(α) dα . (24)

Appendix A.1 gives full details of the above expres-
sions. As can be seen in expressions (20) and (21), a
closed-form expression for the CRPS in (19) relies on
closed-form expressions for the following four integrals
∫
rk(ξ) dξ,

∫
ξ rk(ξ) dξ,

∫
qγ(α) dα, and

∫
αqγ(α) dα.

In the following, we show that these four integrals have
closed-form expressions. We omit the superscript (k)

to simplify notations.

Integrals involving rk(·). If c4 = 0, rk(·) in (3)
reduces to a quadratic function, and the integrals can
be easily computed. We have

∫ 1

z

rk(ξ) dξ = y(k)(1− z) +
∆x(k)δ(k)

2
(1− z2)

+
∆x(k)(s(k) − δ(k))

3
(1− z3), (25)

and
∫ 1

0

ξ rk(ξ) dξ

=
y(k)

2
+

∆x(k)δ(k)

3
+

∆x(k)(s(k) − δ(k))

4
. (26)

If c4 ̸= 0, we have

∫ 1

z

rk(ξ) dξ

=

(

c1 −
c2
c4

)

[1− z] +

∫ 1

z

Aξ +B

aξ2 + bξ + c
dξ , (27)

where A = c3 + c2, B = c2c5
c4

, a = −c4, b = c4 and
c = c5. We also have

∫ 1

0

ξ rk(ξ) dξ =
1

2
(c1 −

c2
c4

)−
(c2 + c3)

c4

+

∫ 1

0

Aξ +B

aξ2 + bξ + c
dξ , (28)

where A = ( c2c5c4
+ c3 + c2), B = (c3+c2)c5

c4
, a = −c4,

b = c4 and c = c5.

The RHS of (27) and (28) involve integrals of lin-
ear/quadratic rational functions, which have closed-
form expressions. While these integrals look compli-
cated, their computation simply requires solving the
quadratic equation aξ2 + bξ + c = 0. Appendix A.2
gives detailed expressions for these integrals.

Integrals involving qγ(·). A closed-form expression
for these integrals will depend on the parametric form
of qγ . For the exponential distribution where qγ is
given by (16), we can show that

∫ 1

α̃

qγ(α) dα

=
(1− α̃)

λ

(

y(K)λ+ 1− log

(
1− α̃

1− x(K)

))

, (29)

and

∫ 1

x(K)

α qγ(α) dα

= −

(
x(K) − 1

) ((
2x(K) + 2

)
y(K)λ+ x(K) + 3

)

4λ
, (30)

where λ = 1/((1− x(K))δ(K)). More details are given
in Appendix C.1.

4 Related work

Neural TPPs. There has been a significant amount
of work on neural TPP modelling. Shchur et al. (2021)
provides a useful review of recent developments. Du
et al. (2016) showed that we can build flexible TPP
models using event embedding through recurrent neu-
ral networks. To improve training efficiency, new
parametrization of recurrent neural TPP models with
closed-form likelihoods have been proposed by Omi
et al. (2019) and Shchur et al. (2020a). Zhang et al.
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(2019) and Zuo et al. (2020) proposed non-reccurent
TPP models based on self-attention mechanisms. Fo-
cusing on faster sampling, Shchur et al. (2020b) pro-
posed non-reccurent TPP models based on triangular
maps. Our work contributes to this field of research
by proposing a new parametrization for neural TPP
models which can be combined with ideas developed
in the previously cited papers. Another line of work
has focused on alternatives to MLE for training TPP
models. Examples include adverserial learning (Xiao
et al., 2017a, 2018), noise constrative estimation (Mei
et al., 2020; Guo et al., 2018) and reinforcement learn-
ing (Upadhyay et al., 2018). While this line of research
is orthogonal to our contribution, we also propose an
alternative to MLE based on the CRPS.

Quantile function modelling. While not widely
used in probabilistic modelling, quantile function es-
timation has been considered in many applications
(Gilchrist, 2000; Koenker et al., 2013). The closely
related problem of quantile regression has been ex-
tensively studied with applications in many domains
(Koenker, 2017; Taylor, 2000; Wen et al., 2017). Un-
like methods based on quantile function estimation,
quantile regression methods often suffer from the
quantile crossing problem, and cannot always be eas-
ily extended to non i.i.d. settings (Koenker and Xiao,
2006).

MLE, which is equivalent to minimizing the logarith-
mic scoring rule, is the most popular approach to train
probabilistic models. The CRPS is more often used
for probabilistic forecast evaluation rather than model
training. Exceptions include Avati et al. (2020), who
trained a survival model using the CRPS, and Duan
et al. (2019), who proposed a gradient boosting model
which can be trained using the CRPS. Ostrovski et al.
(2018) applied quantile function estimation for image
modeling using the CRPS but their parametrization is
not constrained to be strictly increasing.

Our method is related to Gasthaus et al. (2019), who
parametrized a quantile function with piecewise linear
splines trained using the CRPS. However, the para-
metric form of their quantile function is not smooth
and induces a discontinuous PDF. Furthermore, they
focused on probabilistic forecasting for (regular) time
series data.

Monotonic rational-quadratic splines have been re-
cently proposed as nonlinear transformation with bet-
ter properties for normalizing flow models (Durkan
et al., 2019). Except Hutson (2001) who used RQS
to fit an (unconditional) quantile function for a given
sample of data, we are unaware of methods based on
RQS to fit a conditional quantile function using neural
models.

5 Experiments

We evaluate our new TPP parametrization on the
task of event time prediction. Specifically, the task
is to predict the distribution of the time until the next
event τi given the history Hti . We use five simulated
datasets from different processes, as described in Omi
et al. (2019): Hawkes 1 and 2 (Hawkes, 1971), Self-
correcting (Isham and Westcott, 1979), Renewal (Cox,
1967) and Poisson. We also consider twelve real-world
datasets: Taxi (customer pickupts), Wikipedia (article
edits), Reddit, Reddit-C, Reddit-S (comments), Yelp,
Yelp-A, Yelp-M (check-ins to restaurants), PUBG
(online gaming), LastFM (music playback), Twitter
(tweets) and MOOC (online courses). Each dataset
consists of multiple sequences of event times, and has
been used for (neural) TPP modelling (Shchur et al.,
2021, 2020a). See Appendix D for more details.

Setup. We compare our model, denoted as RQS-QF,
with three baselines: (1) the Exponential model (con-
stant intensity/exponential distribution) (Upadhyay
et al., 2018), (2) the RMTPP model (exponential in-
tensity/Gompertz distribution) (Du et al., 2016), and
(3) the LogNormMix model (flexible intensity/a mix-
ture of log-normal with K = 64 components) (Shchur
et al., 2020a).

For a fair comparison, we use the same setup as Shchur
et al. (2020a). All models use the same RNN archi-
tecture where the size of the RNN hidden vector is
H = 64 and the batch size is 64. For the baselines,
the L2 regularization hyperparameter is selected in the
set {0, 10−2, 10−3}. For our model, we select the num-
ber of bins K in the set {1, 2, 3, 5, 8, 10, 15} and use
x(K) = 0.95 for the (upper) tail knot. As can be seen
in Table 6 in Appendix F, our model is robust to the
choice of K.

For each dataset, we partitioned the sequences into
training/validation/test sequences (60%, 20%, 20%).
Our model and the baselines are trained by minimizing
the CRPS and the NLL, respectively. For all models,
we use the Adam optimizer (Kingma and Ba, 2015)
and a learning rate of 10−3. We use the validation
set for hyperparameters tuning including early stop-
ping. We pick the hyperparameter configuration that
achieves the smallest validation error, averaged over
three random initializations.

We evaluate the different models using multiple met-
rics computed on a large sample from the estimated
predictive distributions for each holdout sequence. To
quantify the quantile prediction accuracy, we compute
the quantile score (QS) as defined in (18) for probabil-
ity levels ranging from 1% to 99%. We report the mean
quantile score averaged over all the levels (QSm), as
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NLL QSm MACE QS50 QS90 IS50 IS90 SMAPE

Poisson RQS-QF — 0.496 0.011 0.686 0.463 2.232 3.966 0.783
LogNormMix 0.989 0.496 0.011 0.686 0.462 2.232 3.968 0.784
RMTPP 0.989 0.496 0.011 0.686 0.462 2.231 3.971 0.783
Exponential 0.989 0.496 0.011 0.686 0.463 2.232 3.969 0.783

Renewal RQS-QF — 0.802 0.011 0.921 1.229 3.461 11.640 1.083
LogNormMix 0.260 0.802 0.009 0.921 1.230 3.461 11.657 1.083
RMTPP 0.993 0.911 0.219 1.112 1.237 3.922 11.809 1.240
Exponential 0.981 0.905 0.217 1.104 1.234 3.897 11.802 1.236

Hawkes1 RQS-QF — 0.715 0.011 0.887 0.940 3.176 8.176 0.901
LogNormMix 0.513 0.723 0.014 0.891 0.968 3.203 8.482 0.904
RMTPP 0.735 0.759 0.106 0.964 0.949 3.335 8.525 0.949
Exponential 0.726 0.804 0.095 0.964 1.140 3.531 10.220 1.007

Self-correcting RQS-QF — 0.344 0.010 0.496 0.232 1.544 2.436 0.584
LogNormMix 0.784 0.351 0.013 0.509 0.230 1.580 2.293 0.593
RMTPP 0.775 0.340 0.010 0.494 0.225 1.533 2.241 0.583
Exponential 0.935 0.415 0.073 0.600 0.316 1.834 3.202 0.700

Hawkes2 RQS-QF — 0.783 0.010 0.967 1.058 3.482 9.007 1.166
LogNormMix 0.016 0.793 0.011 0.969 1.091 3.528 9.292 1.176
RMTPP 0.688 0.870 0.192 1.110 1.068 3.820 9.713 1.250
Exponential 0.684 0.901 0.185 1.092 1.261 3.964 11.164 1.330

Table 1: Various metrics computed on the test sequences for the synthetic datasets.

well as the 50-th and the 90-th quantile score (QS50
and QS90, respectively). To quantify quantile calibra-
tion, we compute the mean absolute (quantile) calibra-
tion error (MACE). We also evaluate the accuracy of
(equal-tailed) prediction intervals centered at the me-
dian for target coverage probabilities ranging from 2%
to 98% using the interval score (IS). The interval score
is a proper scoring function that rewards calibrated
and sharp prediction intervals (Winkler, 1972). We
report the interval score for a 50% and a 90% predic-
tion interval (IS50 and IS90, respectively). We further
report the interval width (IW) as a measure of sharp-
ness. Finally, to evaluate point prediction accuracy,
we compute the Symmetric Mean Absolute Percent-
age Error (SMAPE) with the median as point forecast.
While a lower value is better for all metrics, sharpness
(as measured by IW) should be minimized subject to
calibration. Appendix E.3 provides precise definitions
of all metrics used. Open-source code to reproduce all
the experiments is available on GitHub3.

Results. Tables 1 and 2 summarize the results for
synthetic and real-world datasets, respectively. Tables
with standard errors are given in Appendix F.

As expected, all models are able to capture the ex-
ponential distribution of the Poisson process. As a
toy example, Figure 2 shows that our model is able to
recover the quantile function of the exponential distri-

3https://github.com/bsouhaib/qf-tpp

bution associated to the Poisson process. For the re-
newal and Hawkes processes, the more flexible models
(RQS-QF, LogNormMix) achieve better performance
than the simpler baselines. The results on the syn-
thetic datasets show that our model is able to accu-
rately estimate the conditional distribution for a vari-
ety of TPPs.

For the real-world datasets, we can see that the more
flexible models (RQS-QF, LogNormMix) dominates
the simple baselines (RMTPP, Exponential) for al-
most all metrics. This suggests that the higher model
capacity of neural TPP methods is useful for rich
real-world event sequence data. Compared with the
strongest baseline (LogNormMix), our model consis-
tently achieves either lower or comparable quantile
and interval scores. In terms of model calibration,
our model has either lower or comparable MACE than
the best baselines on ten out of twelve datasets. This
shows both the flexibility of our model as well as the
benefit of CRPS model training. Having accurate and
calibrated quantiles and prediction intervals is essen-
tial for many real-world prediction problems.

6 Future work and conclusions

We proposed a new neural parametrization for TPPs
where a smooth continuous quantile function is esti-
mated by minimizing the CRPS of a recurrent neu-
ral spline. Unlike density-based neural TPP models,

https://github.com/bsouhaib/qf-tpp
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NLL QSm MACE QS50 QS90 IS50 IS90 SMAPE

Yelp A RQS-QF — 0.436 0.059 0.592 0.443 2.074 4.054 0.861
LogNormMix 0.660 0.446 0.061 0.589 0.502 2.109 4.349 0.858
RMTPP 0.693 0.447 0.067 0.602 0.466 2.111 4.234 0.859
Exponential 0.683 0.453 0.066 0.592 0.515 2.118 4.851 0.848

Yelp M RQS-QF — 0.261 0.048 0.351 0.279 1.252 2.682 0.900

LogNormMix −0.181 0.277 0.050 0.358 0.334 1.336 2.984 0.913
RMTPP −0.111 0.270 0.066 0.363 0.283 1.293 2.619 0.901

Exponential −0.120 0.300 0.061 0.369 0.401 1.400 3.999 0.926
PUBG RQS-QF — 0.214 0.035 0.290 0.220 0.982 1.950 0.805

LogNormMix −1.095 0.234 0.038 0.308 0.260 1.070 2.219 0.877
RMTPP −0.096 0.215 0.042 0.292 0.219 0.984 1.926 0.802

Exponential −0.096 0.235 0.041 0.310 0.263 1.074 2.260 0.878
Taxi RQS-QF — 0.128 0.040 0.172 0.131 0.623 1.307 0.805

LogNormMix −0.568 0.129 0.043 0.174 0.133 0.635 1.267 0.814
RMTPP −0.563 0.128 0.040 0.173 0.128 0.624 1.227 0.805

Exponential −0.563 0.137 0.038 0.178 0.156 0.656 1.554 0.819
Yelp RQS-QF — 1.894 0.021 2.586 1.886 9.644 18.463 0.961

LogNormMix 1.620 4.095 0.026 2.659 2.047 10.021 19.664 0.979
RMTPP 1.960 1.908 0.047 2.595 1.897 9.704 18.922 0.950

Exponential 1.961 2.007 0.045 2.675 2.151 10.122 21.360 0.970
Reddit-S RQS-QF — 0.011 0.011 0.015 0.011 0.056 0.103 0.782

LogNormMix −3.207 0.011 0.031 0.016 0.011 0.057 0.110 0.801
RMTPP −3.005 0.011 0.010 0.015 0.011 0.056 0.103 0.780

Exponential −3.005 0.012 0.012 0.016 0.014 0.061 0.136 0.830
MOOC RQS-QF — 6.604 0.072 6.873 12.050 27.869 124.777 1.315

LogNormMix −1.764 6.604 0.083 6.875 12.217 27.892 126.385 1.370
RMTPP 2.912 9.140 0.414 10.812 12.848 39.205 131.462 1.867
Exponential 2.891 9.061 0.415 10.627 13.002 38.843 132.194 1.877

Reddit-C RQS-QF — 0.044 0.046 0.057 0.050 0.864 2.129 0.811
LogNormMix −2.451 0.045 0.052 0.058 0.053 0.897 2.272 0.818
RMTPP −2.321 0.044 0.047 0.058 0.049 0.849 2.201 0.804

Exponential −2.318 0.048 0.038 0.061 0.061 0.887 2.243 0.872
Twitter RQS-QF — 0.517 0.095 0.637 0.699 2.939 6.847 1.013

LogNormMix −0.054 0.517 0.092 0.634 0.705 2.924 6.952 1.012

RMTPP 0.528 0.572 0.181 0.730 0.710 3.080 7.862 1.196
Exponential 0.527 0.564 0.179 0.716 0.714 3.054 7.684 1.204

Reddit RQS-QF — 9.417 0.058 12.467 10.890 41.946 93.385 1.152
LogNormMix 2.940 9.369 0.053 12.368 10.971 41.647 94.204 1.148

RMTPP 3.612 10.060 0.149 13.428 11.030 44.567 99.713 1.195
Exponential 3.607 10.032 0.149 13.376 11.129 44.383 99.757 1.197

LastFM RQS-QF — 0.373 0.039 0.441 0.544 7.646 24.723 0.786

LogNormMix −2.975 0.430 0.030 0.457 0.634 7.960 26.432 0.818
RMTPP −1.430 0.430 0.260 0.532 0.560 8.054 26.347 1.365
Exponential −1.380 0.557 0.230 0.510 1.068 8.053 2098.119 1.479

Wikipedia RQS-QF — 2.959 0.046 3.455 4.411 15.305 46.521 1.138
LogNormMix 0.239 2.978 0.037 3.453 4.511 15.405 47.855 1.124

RMTPP 1.921 3.474 0.281 4.304 4.508 17.445 50.984 1.494
Exponential 1.897 3.399 0.271 4.070 4.830 17.197 52.587 1.523

Table 2: Various metrics computed on the test sequences for the real-world datasets.

our model directly parametrizes the quantile function
which brings multiple advantages. In fact, quantile
predictions are optimal under a large class of loss func-
tions which arise in many real-world prediction prob-
lems. Furthermore, our model has closed-form expres-
sions for quantiles, prediction intervals and the expec-
tation. This allows us to avoid expensive sampling-
based approximations. Importantly, we derive an ana-
lytical expression for the CRPS of our model which
enables more efficient parameter optimization. We
also demonstrate that our parametrization leads to a
flexible yet tractable neural TPP model with state-of-
the-art performance in standard prediction tasks on
both synthetic and real-world event data. We hope
our method will pave the way to new approaches for
parametrizing, training, and evaluating neural TPP
models. For future work, we propose to extend our
model to marked TPPs as well as multivariate TPPs

using multivariate scoring rules.
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A Computation of the CRPS

A.1 Integral decomposition

Consider a quantile function qθ as defined in (15), an observation τ ∈ R+ and let α̃ = q−1
θ̄

(τ). The CRPS defined
in (17) can be decomposed as follows:

CRPS(qθ̄, τ) =

∫ 1

0

(✶{τ < qθ̄(α)} − α) (qθ̄(α)− τ) dα (31)

=

∫ ᾱ

0

α(τ − qθ̄(α)) dα+

∫ 1

ᾱ

(1− α) (qθ̄(α)− τ) dα (32)

=

∫ ᾱ

0

(ατ − αqθ̄(α)) dα+

∫ 1

ᾱ

(qθ̄(α)− τ − αqθ̄(α) + ατ) dα (33)

=

∫ 1

0

ατ dα−

∫ 1

0

αqθ̄(α) dα+

∫ 1

α̃

qθ̄(α) dα− τ

∫ 1

α̃

dα (34)

= τ

∫ 1

0

α dα− τ

∫ 1

α̃

dα−

∫ 1

0

αqθ̄(α) dα+

∫ 1

α̃

qθ̄(α) dα (35)

= τ(α̃−
1

2
)−

∫ 1

0

α qθ(α) dα

︸ ︷︷ ︸

A

+

∫ 1

α̃

qθ(α) dα

︸ ︷︷ ︸

B

. (36)

Using (15) and applying the change of variables ξ = (α − x(k))/∆x(k) for k = 1, 2, . . . ,K − 1, expression A in
(36) can be written as

A =

∫ 1

0

α qθ̄(α) dα (37)

=

∫ x(K)

0

α qθ(α) dα+

∫ 1

x(K)

α qγ(α) dα (38)

=

K−1∑

k=0

∫ x(k+1)

x(k)

α qθ(α) dα+

∫ 1

x(K)

α qγ(α) dα (39)

=

K−1∑

k=0

[

[∆x(k)]2
∫ 1

0

ξ rk(ξ) dξ + x(k)∆x(k)

∫ 1

0

rk(ξ) dξ

]

+

∫ 1

x(K)

α qγ(α) dα . (40)

Recall that α̃ = q−1
θ̄

(τ). Computing expression B in (36) will depend on where α̃ lies. Let us consider the
following three cases:

Case 1 (α̃ < x(K−1)). Let l ∈ {0, 1, . . . ,K − 1} denote the bin where α̃ lies, i.e. α̃ ∈ [x(l), x(l+1)] and
τ ∈ [y(l), y(l+1)]. We can write

B =

∫ 1

α̃

qθ̄(α) dα (41)

=

∫ x(l+1)

α̃

qθ(α) dα+

K−1∑

k=l+1

∫ x(k+1)

x(k)

qθ(α) dα+

∫ 1

x(K)

qγ(α) dα (42)

= ∆x(l)

∫ 1

α̃−x(l)

∆x(l)

rl(ξ) dξ +

K−1∑

k=l+1

∆x(k)

∫ 1

0

rk(ξ) dξ +

∫ 1

x(K)

qγ(α) dα . (43)

Case 2 (x(K−1) ≤ α̃ < x(K)).

B =

∫ 1

α̃

qθ̄(α) dα =

∫ x(K)

α̃

qθ(α) dα+

∫ 1

x(K)

qγ(α) dα . (44)
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Case 3 (x(K) ≤ α̃ < 1).

B =

∫ 1

α̃

qθ̄(α) dα =

∫ 1

α̃

qγ(α) dα . (45)

A.2 Integral of linear/quadratic rational functions

As can be seen in expressions (27) and (28), computing the CRPS reduces to computing integrals of lin-
ear/quadratic rational functions. Specifically, we need to compute

∫ 1

z

Aξ +B

aξ2 + bξ + c
dξ , (46)

where z ∈ [0, 1], a ̸= 0 and b ̸= 0.

The solution of this integral will depend on the sign of the discriminant ∆ = b2−4ac associated to the quadratic
equation aξ2 + bξ + c = 0. Let us consider the three possible cases.

Case 1: ∆ > 0. Since aξ2+ bξ+ c = a(ξ− ξ1)(ξ− ξ2) with ξ1, ξ2 = −b±
√
∆

2a , the integrand in (46) can be written
as

Aξ +B

aξ2 + bξ + c
=

1

a

Aξ +B

(ξ − ξ1)(ξ − ξ2)
=

1

a

[
R

(ξ − ξ1)
+

L

(ξ − ξ2)

]

,

where R = Aξ1+B
ξ1−ξ2

and L = Aξ2+B
ξ2−ξ1

. The solution is given by

∫ 1

z

Aξ +B

aξ2 + bξ + c
dξ =

1

a

[∫ 1

z

R

(ξ − ξ1)
dξ +

∫ 1

z

L

(ξ − ξ2)
dξ

]

=
1

a
[R ln|ξ − ξ1|+ L ln|ξ − ξ2|]

1
z .

Case 2: ∆ = 0. Since aξ2 + bξ + c = a(ξ − ξ0)
2 with ξ0 = −b

2a , we can write

Aξ +B

aξ2 + bξ + c
=

1

a

Aξ +B

(ξ − ξ0)2
=

1

a

[
A

ξ − ξ0
+

B +Aξ0
(ξ − ξ0)2

]

.

The solution is given by

∫ 1

z

Aξ +B

aξ2 + bξ + c
dξ =

1

a

[

A ln|ξ − ξ0| −
B +Aξ0
ξ − ξ0

]1

z

.

Case 3: ∆ < 0. We have an irreducible quadratic denominator. By completing the square, we obtain

aξ2 + bξ + c = a

[(

ξ +
b

2a

)2

+
4ac− b2

4a2

]

.

The solution is given by

∫ 1

z

Aξ +B

aξ2 + bξ + c
dξ =

1

a

∫ 1+ b
2a

z+ b
2a

Au+B
′

u2 +m2
du =

1

a

[

A

2
ln(u2 +m2) +

B
′

m
arctan

( u

m

)
]1+ b

2a

z+ b
2a

,

where u = ξ + b
2a , m

2 = 4ac−b2

4a2 and B
′

= B − Ab
2a .

All these expressions can be further simplified by replacing A, B, a, b, and c with their values given in (27) and
(28).
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B Computational time

Tables 3 and 4 give the computing time of our model (in seconds) averaged over ten epochs for a single forward
and backward pass, respectively. The numbers in brackets give the associated standard errors. RQS-QF-CRPS

computes the closed-form expression of the CRPS using (36) while RQS-QF-CRPS-x approximates the integral in
(31) using the trapezoid rule with x evenly spaced numbers.

As expected, we can see that more bins lead to higher computing time regardless of the method used to compute
the CRPS. Furthermore, we can see that RQS-QF-CRPS-500 takes more time than RQS-QF-CRPS for both forward
and backward passes. As can be seen in Table 4, the increase in computing time is higher for the backward pass.
While it is possible to reduce computing time by using less evaluations (RQS-QF-CRPS-200 or RQS-QF-CRPS-100),
the approximation of the CRPS will be less accurate. Using the closed-form expression of the CRPS allows us
to avoid approximation errors while having lower computing time than an approximation with a large number
of evaluations.

1 2 3 5 8 10 15

RQS-QF-CRPS 0.288 (0.059) 1.002 (0.229) 1.101 (0.154) 1.384 (0.207) 1.960 (0.329) 1.896 (0.467) 2.110 (0.447)
RQS-QF-CRPS-100 0.311 (0.092) 0.266 (0.026) 0.320 (0.107) 0.361 (0.111) 0.340 (0.058) 0.317 (0.048) 0.339 (0.059)
RQS-QF-CRPS-200 0.450 (0.039) 0.564 (0.047) 0.534 (0.049) 0.562 (0.052) 0.604 (0.063) 0.633 (0.069) 0.673 (0.083)
RQS-QF-CRPS-500 1.583 (0.392) 1.718 (0.439) 1.534 (0.407) 1.631 (0.375) 2.081 (0.710) 1.907 (0.436) 2.143 (0.695)

Table 3: Average execution time (in seconds) over 10 epochs for a forward pass with a different number of bins.

1 2 3 5 8 10 15

RQS-QF-CRPS 0.118 (0.056) 0.700 (0.202) 0.780 (0.133) 0.986 (0.223) 1.396 (0.275) 1.399 (0.312) 1.633 (0.337)
RQS-QF-CRPS-100 0.390 (0.105) 0.363 (0.046) 0.438 (0.139) 0.485 (0.140) 0.505 (0.096) 0.487 (0.059) 0.553 (0.077)
RQS-QF-CRPS-200 0.671 (0.072) 0.859 (0.085) 0.825 (0.084) 0.884 (0.094) 0.994 (0.106) 1.083 (0.109) 1.206 (0.143)
RQS-QF-CRPS-500 3.178 (0.472) 3.339 (0.519) 3.301 (0.507) 3.477 (0.445) 4.199 (1.026) 4.139 (0.544) 4.575 (1.047)

Table 4: Average execution time (in seconds) over 10 epochs for a backward pass with a different number of
bins.

Having a closed-form expression for the quantile function enables more efficient prediction intervals computation.
The following Tables give the computing time (in seconds) to generate 100 equal-tailed 95% prediction intervals
for both LogNormMix (with different sample sizes) and our method (with different number of knots), respectively.
We can see that sampling-based approximations of prediction intervals (LogNormMix) are significantly slower to
compute than prediction intervals directly extracted from the quantile function (our method). For LogNormMix,
the computing time increases significantly with the sample size while it is relatively stable with respect to the
number of knots for our method.

50 100 200 500 1000

2.17 4.15 9.76 26.03 55.05

1 2 3 5 8 10

0.55 0.61 0.63 0.67 0.70 0.78

Table 5: Average execution time (in seconds) to generate 100 equal-tailed 95% prediction intervals. LogNormMix,
with different sample sizes (left) and our method, with different number of knots (right).

C More on our quantile model

C.1 Tail modelling

Let (x(K), y(K)) denote the tail knot, Fθ, the CDF associated to the quantile function in (12) with Fθ(y
(K)) = 1,

and Fγ , the CDF of the tail with Fγ(0) = 0. We consider the following CDF mixture for a continuous random
variable τ ∈ R+:

Fθ̄(τ) = x(K)Fθ(τ) + (1− x(K))Fγ(τ − y(K)),
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for which the quantile function is given by

F−1
θ̄

(α) =

{

F−1
θ (α/x(K)), if 0 ≤ α ≤ x(K)

y(K) + F−1
γ (α−x(K)

1−x(K) ). if α ≥ x(K)
. (47)

Note that by construction, the quantile function in (47) satisfies the first constraint in (14), i.e. F−1
θ̄

(x(K)) = y(K).

For the tail distribution, we consider an exponential distribution with rate λ > 0, for which the quantile function
is given by

F−1
γ (α) = −log(1− α)/λ. (48)

By plugging in (48) in (47), the quantile function for α ≥ x(K) is given by

qγ(α) = y(K) −
1

λ
log

(
1− α

1− x(K)

)

. (49)

In order to satisfy the second constraints in (14), i.e.
dqγ(x

(K))
dα = δ(K), we can check that we must have

λ = 1/((1− x(K))δ(K)).

Finally, computing expressions (40) and (43) depends on integrals which involve the tail quantile function in
(49). We can show that

∫ 1

α̃

qγ(α) dα =
(1− α̃)

λ

(

y(K)λ+ 1− log

(
1− α̃

1− x(K)

))

, (50)

and
∫ 1

x(K)

α qγ(α) dα = −

(
x(K) − 1

) ((
2x(K) + 2

)
y(K)λ+ x(K) + 3

)

4λ
.

C.2 Closed-form expression for the expectation

Let qθ̄ be the quantile function of the continuous random variable τ ∈ R+, as defined in (15). The expectation
is given by

E[τ ] =

∫ 1

0

qθ̄(α) dα , (51)

=

∫ x(K)

0

qθ(α) dα+

∫ 1

x(K)

qγ(α) dα , (52)

which can be computed using expressions (41) and (50) with α̃ = 0 and l = 0.

C.3 Transformations

A useful property of quantile functions for continuous random variables is that they are equivariant under
monotonic transformations. Consider the random variable Y ∈ R+, the strictly monotonic transformation g,
and define Z = g(Y ). Let qθ;Y and qθ̃;Z be the model for the quantile function of Y and Z, respectively. We can
write

qθ;Y (α) = g−1(qθ̃;Z(α))

and
q
′

θ;Y (α) = (g−1)
′

(qθ̃;Z(α))q
′

θ̃;Z
(α).

For the CDFs and their derivaties, we can write

Fθ;Y (y) = Fθ̃;Z(g(y))
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and

F
′

θ;Y (y) = F
′

θ̃;Z
(g(y)) g

′

(y).

In our experiments, to stabilize the variance of the data, we used the transformation g(Y ) = log(1+Y )/σ̂ where
σ̂ is the empirical standard deviation of the inter-arrival times computed using the training sequences.

D Datasets

We use five simulated datasets from different processes, as described in Omi et al. (2019): Hawkes 1 and
2 (Hawkes, 1971), Self-correcting (Isham and Westcott, 1979), Renewal (Cox, 1967) and Poisson. For each
synthetic dataset, there are 64 sequences with 1024 events. See Appendix E.1 in Shchur et al. (2020a) for
more details. We also consider twelve real-world datasets: Taxi (customer pickupts), Wikipedia (article edits),
Reddit, Reddit-C, Reddit-S (comments), Yelp, Yelp-A, Yelp-M (check-ins to restaurants), PUBG (online gaminig),
LastFM (music playback), Twitter (tweets) and MOOC (online courses). Each dataset consists of multiple
sequences of event times, and has been used for (neural) TPP modelling (Shchur et al., 2021, 2020a). Appendix
E.2 in Shchur et al. (2020a) gives more details for Wikipedia, Reddit, Yelp, LastFM, Twitter and MOOC, while
Appendix D in Shchur et al. (2021) has more information for the other datasets. For each dataset, we remove
sequences with less than five events. For Reddit and MOOC, we reduce the number of sequences to save
computational time. Specifically, for Reddit, we use a subset of 2290 sequences with 101529 events (instead of
10000 sequences with 672350 events). For MOOC, we use 2178 sequences with 81955 events (instead of 7047
sequences with 396633 events).

E Experiments

E.1 Additional setup details

The training sequences were split into sequences of length at most 128 and we perform training using mini-
batches composed of 64 sequences. We define an epoch as the processing of all the training sequences. We use
the validation set for hyperparameters tuning including early stopping. We pick the hyperparameter configuration
that achieves the smallest validation error, averaged over three random initializations. With the NLL, we use a
patience of p = 100 epochs with a maximum of 2000 epochs. With the CRPS, we use a patience of p = 50 epochs
with a maximum of 700 epochs. In other words, if there is no improvement after p epochs, we stop training
the model and return the model parameters with the lowest validation error. For LastFM and Reddit, we used
K = 8 components for LogNormMix since we found that sampling from the model was more stable with less
components. Note that Shchur et al. (2020a) found that LogNormMix was robut to the choice of K. We used a
machine composed of an Intel Xeon Platinum 8275CL @ 3.00GHz CPU, 192GB RAM. Our implementation uses
PyTorch4 and builds on the implementations of Durkan et al. (2019)5 and Shchur et al. (2020a)6.

E.2 Computation of the CRPS

Since not all compared models have a closed-form expression for the CRPS, we use a sampling-based approach
to compute the CRPS. Let Fθ be a predictive CDF and assume it has finite first moment. The CRPS can be
written as

CRPS(Fθ, τ) = EFθ
|X1 − τ | −

1

2
EFθ,Fθ

[X1 −X2], (53)

where X1 and X2 are two independent random variables with distribution Fθ (Gneiting et al., 2007).

If we draw n samples, τ1, τ2, . . . , τn, from Fθ, a natural approximation of Fθ is given by the empirical CDF

F
(n)
θ (τ) =

1

n

n∑

i=1

✶{τi ≤ τ}.

4https://pytorch.org/.
5https://github.com/bayesiains/nsf
6https://github.com/shchur/ifl-tpp/tree/original-code

https://pytorch.org/
https://github.com/bayesiains/nsf
https://github.com/shchur/ifl-tpp/tree/original-code
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Then, using (53), we can compute (Grimit et al., 2006)

CRPS(F
(n)
θ , τ) =

1

n

n∑

i=1

|τi − τ | −
1

2n2

n∑

i=1

n∑

j=1

|τi − τj |. (54)

We used a computationally more efficient and algebraically equivalent representation of the CRPS, given by
(Murphy, 1970; Laio and Tamea, 2007)

CRPS(F
(n)
θ , τ) =

2

n2

n∑

i=1

|τ(i) − τ |

(

n ✶{τ < τ(i)} − i+
1

2

)

, (55)

where τ(1), τ(2), . . . , τ(n) are the sorted samples. We used n = 500 in all our experiments. We refer the reader to
Jordan et al. (2019) for more details.

E.3 Metrics

All the metrics are computed by summing over all the S test sequences, i.e. s = 1, 2, . . . , S, and over all the
observations, i.e. i = 1, 2, . . . , Ns where Ns is the number of events for the s-th sequence.

We compute the mean quantile score (QSm) by averaged the quantile score (QS) as defined in (18) for all
probability levels ranging from 1% to 99%. In other words, we compute

QSm =
1

99

99∑

k=1

QS(k),

where

QS(k) =
1

S

1

Ns

S∑

s=1

Ns∑

i=1

QSk/100
(
qθs,i

(k/100), τs,i
)
, (56)

and θs,i are the parameters used to predict the i-th observation in the s-th sequence. In the main text, we used

QS50 and QS90 as a shorthand for QS(50) and QS(90), respectively.

Similarly, we define the mean absolute calibration error (MACE) as

MACE =
1

99

99∑

k=1

ACE(k), (57)

where

ACE(k) =

∣
∣
∣
∣
∣

k

100
−

1

S

1

Ns

S∑

s=1

Ns∑

i=1

·I
(
τs,i ≤ qθs,i

(k/100)
)

∣
∣
∣
∣
∣
, (58)

and I is an indicator function.

For a continuous distribution, the (1 − α) × 100% equal-tailed prediction interval centered at the median, with
α ∈ (0, 1), should have α/2 probability mass in both tails. We evaluate the accuracy of equal-tailed prediction
intervals for target coverage probabilities ranging from 2% to 98% using the interval score (IS).

Let τs,i be a realization, and [l
(k)
s,i , u

(k)
s,i ], the (1 − ρ) × 100% prediction intervals with l

(k)
s,i = qθs,i

(0.5− k/100),

u
(k)
s,i = qθs,i

(0.5 + k/100), ρ = 2k
100 , and k = 1, 2, . . . , 48. The interval score is given by

IS(k) =
1

S

1

Ns

S∑

s=1

Ns∑

i=1

(u
(k)
s,i − l

(k)
s,i ) +

2

ρ
(l

(k)
s,i − τs,i)I(τs,i < l

(k)
s,i ) +

2

ρ
(τs,i − u

(k)
s,i )I(τs,i > u

(k)
s,i ). (59)

Note that the interval score essentially combines the interval width with the quantile scores for both the 1− ρ/2

and the ρ/2 quantiles. In the main text, we used IS50 and IS90 as a shorthand for IS(25) and IS(45), respectively.
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Finally, using the median as point forecast, we compute the Symmetric Mean Absolute Percentage Error
(SMAPE) as follows:

SMAPE =
1

S

1

Ns

S∑

s=1

Ns∑

i=1

2×
|τs,i − τ̂s,i|

|τs,i|+ |τ̂s,i|
,

where τ̂s,i = qθs,i
(0.5).

F Additional results

Table 6 gives the average quantile score on the test set for our model with different number of bins. Tables 7
and 8 give the same information as Tables 1 and 2 ncluding standard errors. Detailed results are also given in
Figure 3 for synthetic datasets, and Figures 4, 5 and 6 for real-world datasets. For a better visualization, we
only plot the results of our model and the best baseline (LogNormMix).

1 2 3 8 10 15

Yelp A 0.437 0.438 0.436 0.438 0.435 0.435
Taxi 0.128 0.128 0.128 0.128 0.128 0.129
Yelp M 0.264 0.264 0.264 0.262 0.260 0.261
Twitter 0.519 0.516 0.516 0.516 0.516 0.516
Wikipedia 2.969 2.953 2.954 2.952 2.953 2.952
PUBG 0.214 0.214 0.214 0.214 0.214 0.214
Yelp 1.894 1.892 1.891 1.889 1.889 1.889
Reddit-C 0.044 0.044 0.044 0.044 0.044 0.044
Reddit-S 0.011 0.011 0.011 0.011 0.011 0.011
LastFM 0.374 0.372 0.372 0.373 0.372 0.372
MOOC 6.695 6.570 6.565 6.563 6.562 6.560
Reddit 9.481 9.423 9.425 9.404 9.410 9.395

Table 6: Average quantile score (QSm) for RQS-QF with different number of bins.

NLL QSm MACE QS50 QS90 IS50 IS90

Poisson RQS-QF — 0.496 (0.003) 0.011 (0.000) 0.686 (0.005) 0.463 (0.001) 2.232 (0.012) 3.966 (0.009)
LogNormMix 0.989 (0.005) 0.496 (0.002) 0.011 (0.000) 0.686 (0.005) 0.462 (0.001) 2.232 (0.012) 3.968 (0.008)
RMTPP 0.989 (0.005) 0.496 (0.003) 0.011 (0.001) 0.686 (0.005) 0.462 (0.002) 2.231 (0.012) 3.971 (0.010)
Exponential 0.989 (0.005) 0.496 (0.002) 0.011 (0.001) 0.686 (0.005) 0.463 (0.001) 2.232 (0.012) 3.969 (0.006)

Renewal RQS-QF — 0.802 (0.009) 0.011 (0.001) 0.921 (0.012) 1.229 (0.019) 3.461 (0.040) 11.640 (0.146)
LogNormMix 0.260 (0.006) 0.802 (0.009) 0.009 (0.000) 0.921 (0.012) 1.230 (0.020) 3.461 (0.040) 11.657 (0.157)
RMTPP 0.993 (0.009) 0.911 (0.010) 0.219 (0.002) 1.112 (0.013) 1.237 (0.019) 3.922 (0.041) 11.809 (0.166)
Exponential 0.981 (0.010) 0.905 (0.012) 0.217 (0.002) 1.104 (0.018) 1.234 (0.021) 3.897 (0.053) 11.802 (0.166)

Hawkes1 RQS-QF — 0.715 (0.024) 0.011 (0.000) 0.887 (0.037) 0.940 (0.039) 3.176 (0.108) 8.176 (0.250)
LogNormMix 0.513 (0.037) 0.723 (0.025) 0.014 (0.003) 0.891 (0.038) 0.968 (0.044) 3.203 (0.114) 8.482 (0.277)
RMTPP 0.735 (0.045) 0.759 (0.023) 0.106 (0.003) 0.964 (0.032) 0.949 (0.040) 3.335 (0.096) 8.525 (0.327)
Exponential 0.726 (0.043) 0.804 (0.025) 0.095 (0.003) 0.964 (0.036) 1.140 (0.043) 3.531 (0.109) 10.220 (0.318)

Self-correcting RQS-QF — 0.344 (0.001) 0.010 (0.001) 0.496 (0.001) 0.232 (0.001) 1.544 (0.004) 2.436 (0.000)
LogNormMix 0.784 (0.001) 0.351 (0.002) 0.013 (0.002) 0.509 (0.004) 0.230 (0.002) 1.580 (0.008) 2.293 (0.011)
RMTPP 0.775 (0.002) 0.340 (0.001) 0.010 (0.000) 0.494 (0.002) 0.225 (0.002) 1.533 (0.005) 2.241 (0.011)
Exponential 0.935 (0.001) 0.415 (0.002) 0.073 (0.000) 0.600 (0.004) 0.316 (0.001) 1.834 (0.009) 3.202 (0.017)

Hawkes2 RQS-QF — 0.783 (0.019) 0.010 (0.000) 0.967 (0.030) 1.058 (0.026) 3.482 (0.085) 9.007 (0.160)
LogNormMix 0.016 (0.029) 0.793 (0.021) 0.011 (0.001) 0.969 (0.031) 1.091 (0.037) 3.528 (0.096) 9.292 (0.225)
RMTPP 0.688 (0.034) 0.870 (0.019) 0.192 (0.002) 1.110 (0.030) 1.068 (0.030) 3.820 (0.083) 9.713 (0.246)
Exponential 0.684 (0.032) 0.901 (0.020) 0.185 (0.002) 1.092 (0.030) 1.261 (0.036) 3.964 (0.088) 11.164 (0.273)

Table 7: Various metrics computed on the test sequences (synthetic datasets). Standard errors are given in
brackets.
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NLL QSm MACE QS50 QS90 IS50 IS90

Yelp A RQS-QF — 0.436 (0.004) 0.059 (0.001) 0.592 (0.006) 0.443 (0.004) 2.074 (0.033) 4.054 (0.030)
LogNormMix 0.660 (0.007) 0.446 (0.001) 0.061 (0.002) 0.589 (0.002) 0.502 (0.003) 2.109 (0.012) 4.349 (0.037)
RMTPP 0.693 (0.007) 0.447 (0.002) 0.067 (0.001) 0.602 (0.002) 0.466 (0.006) 2.111 (0.012) 4.234 (0.071)
Exponential 0.683 (0.007) 0.453 (0.002) 0.066 (0.001) 0.592 (0.004) 0.515 (0.003) 2.118 (0.021) 4.851 (0.024)

Yelp M RQS-QF — 0.261 (0.003) 0.048 (0.002) 0.351 (0.002) 0.279 (0.008) 1.252 (0.005) 2.682 (0.064)
LogNormMix −0.181 (0.012) 0.277 (0.005) 0.050 (0.001) 0.358 (0.005) 0.334 (0.018) 1.336 (0.014) 2.984 (0.171)
RMTPP −0.111 (0.012) 0.270 (0.005) 0.066 (0.001) 0.363 (0.006) 0.283 (0.010) 1.293 (0.018) 2.619 (0.065)
Exponential −0.120 (0.013) 0.300 (0.003) 0.061 (0.002) 0.369 (0.005) 0.401 (0.005) 1.400 (0.009) 3.999 (0.014)

PUBG RQS-QF — 0.214 (0.001) 0.035 (0.000) 0.290 (0.001) 0.220 (0.001) 0.982 (0.002) 1.950 (0.002)
LogNormMix −1.095 (0.009) 0.234 (0.001) 0.038 (0.001) 0.308 (0.001) 0.260 (0.001) 1.070 (0.002) 2.219 (0.007)
RMTPP −0.096 (0.002) 0.215 (0.001) 0.042 (0.000) 0.292 (0.001) 0.219 (0.001) 0.984 (0.002) 1.926 (0.005)
Exponential −0.096 (0.002) 0.235 (0.001) 0.041 (0.001) 0.310 (0.001) 0.263 (0.001) 1.074 (0.002) 2.260 (0.006)

Wikipedia RQS-QF — 2.959 (0.038) 0.046 (0.003) 3.455 (0.059) 4.411 (0.057) 15.305 (0.171) 46.521 (0.472)
LogNormMix 0.239 (0.068) 2.978 (0.036) 0.037 (0.000) 3.453 (0.060) 4.511 (0.051) 15.405 (0.176) 47.855 (0.425)
RMTPP 1.921 (0.050) 3.474 (0.040) 0.281 (0.001) 4.304 (0.066) 4.508 (0.054) 17.445 (0.180) 50.984 (0.552)
Exponential 1.897 (0.043) 3.399 (0.052) 0.271 (0.002) 4.070 (0.093) 4.830 (0.050) 17.197 (0.166) 52.587 (0.484)

LastFM RQS-QF — 0.373 (0.005) 0.039 (0.002) 0.441 (0.005) 0.544 (0.013) 7.646 (0.651) 24.723 (3.941)
LogNormMix −2.975 (0.044) 0.430 (0.007) 0.030 (0.001) 0.457 (0.004) 0.634 (0.010) 7.960 (0.634) 26.432 (4.095)
RMTPP −1.430 (0.057) 0.430 (0.007) 0.260 (0.003) 0.532 (0.010) 0.560 (0.014) 8.054 (0.718) 26.347 (3.760)
Exponential −1.380 (0.048) 0.557 (0.080) 0.230 (0.002) 0.510 (0.004) 1.068 (0.325) 8.053 (0.701) 2098.119 (1694.523)

Taxi RQS-QF — 0.128 (0.001) 0.040 (0.001) 0.172 (0.002) 0.131 (0.002) 0.623 (0.021) 1.307 (0.082)
LogNormMix −0.568 (0.013) 0.129 (0.002) 0.043 (0.001) 0.174 (0.003) 0.133 (0.002) 0.635 (0.022) 1.267 (0.063)
RMTPP −0.563 (0.012) 0.128 (0.001) 0.040 (0.001) 0.173 (0.002) 0.128 (0.002) 0.624 (0.022) 1.227 (0.060)
Exponential −0.563 (0.013) 0.137 (0.002) 0.038 (0.000) 0.178 (0.003) 0.156 (0.002) 0.656 (0.019) 1.554 (0.056)

Twitter RQS-QF — 0.517 (0.020) 0.095 (0.003) 0.637 (0.031) 0.699 (0.027) 2.939 (0.108) 6.847 (0.188)
LogNormMix −0.054 (0.070) 0.517 (0.021) 0.092 (0.002) 0.634 (0.032) 0.705 (0.038) 2.924 (0.112) 6.952 (0.322)
RMTPP 0.528 (0.054) 0.572 (0.019) 0.181 (0.004) 0.730 (0.028) 0.710 (0.032) 3.080 (0.095) 7.862 (0.300)
Exponential 0.527 (0.055) 0.564 (0.021) 0.179 (0.004) 0.716 (0.032) 0.714 (0.031) 3.054 (0.101) 7.684 (0.281)

Yelp RQS-QF — 1.894 (0.022) 0.021 (0.000) 2.586 (0.038) 1.886 (0.022) 9.644 (0.153) 18.463 (0.237)
LogNormMix 1.620 (0.039) 4.095 (1.708) 0.026 (0.001) 2.659 (0.038) 2.047 (0.030) 10.021 (0.137) 19.664 (0.173)
RMTPP 1.960 (0.023) 1.908 (0.022) 0.047 (0.001) 2.595 (0.038) 1.897 (0.023) 9.704 (0.151) 18.922 (0.232)
Exponential 1.961 (0.024) 2.007 (0.025) 0.045 (0.002) 2.675 (0.040) 2.151 (0.037) 10.122 (0.147) 21.360 (0.293)

Reddit-C RQS-QF — 0.044 (0.001) 0.046 (0.003) 0.057 (0.001) 0.050 (0.001) 0.864 (0.049) 2.129 (0.132)
LogNormMix −2.451 (0.024) 0.045 (0.001) 0.052 (0.000) 0.058 (0.001) 0.053 (0.001) 0.897 (0.049) 2.272 (0.130)
RMTPP −2.321 (0.018) 0.044 (0.001) 0.047 (0.002) 0.058 (0.001) 0.049 (0.001) 0.849 (0.047) 2.201 (0.143)
Exponential −2.318 (0.018) 0.048 (0.001) 0.038 (0.001) 0.061 (0.001) 0.061 (0.001) 0.887 (0.049) 2.243 (0.141)

Reddit-S RQS-QF — 0.011 (0.000) 0.011 (0.000) 0.015 (0.000) 0.011 (0.000) 0.056 (0.000) 0.103 (0.001)
LogNormMix −3.207 (0.023) 0.011 (0.000) 0.031 (0.009) 0.016 (0.000) 0.011 (0.000) 0.057 (0.001) 0.110 (0.003)
RMTPP −3.005 (0.008) 0.011 (0.000) 0.010 (0.000) 0.015 (0.000) 0.011 (0.000) 0.056 (0.000) 0.103 (0.001)
Exponential −3.005 (0.008) 0.012 (0.000) 0.012 (0.000) 0.016 (0.000) 0.014 (0.000) 0.061 (0.000) 0.136 (0.001)

MOOC RQS-QF — 6.604 (0.112) 0.072 (0.001) 6.873 (0.152) 12.050 (0.280) 27.869 (0.653) 124.777 (2.003)
LogNormMix −1.764 (0.059) 6.604 (0.111) 0.083 (0.001) 6.875 (0.152) 12.217 (0.264) 27.892 (0.644) 126.385 (2.092)
RMTPP 2.912 (0.022) 9.140 (0.118) 0.414 (0.001) 10.812 (0.165) 12.848 (0.223) 39.205 (0.646) 131.462 (2.621)
Exponential 2.891 (0.019) 9.061 (0.099) 0.415 (0.002) 10.627 (0.128) 13.002 (0.215) 38.843 (0.524) 132.194 (2.493)

Reddit RQS-QF — 9.417 (0.046) 0.058 (0.001) 12.467 (0.058) 10.890 (0.124) 41.946 (0.232) 93.385 (1.123)
LogNormMix 2.940 (0.024) 9.369 (0.047) 0.053 (0.001) 12.368 (0.066) 10.971 (0.119) 41.647 (0.211) 94.204 (0.930)
RMTPP 3.612 (0.007) 10.060 (0.055) 0.149 (0.002) 13.428 (0.072) 11.030 (0.103) 44.567 (0.246) 99.713 (1.018)
Exponential 3.607 (0.007) 10.032 (0.049) 0.149 (0.001) 13.376 (0.063) 11.129 (0.110) 44.383 (0.216) 99.757 (1.160)

Table 8: Various metrics computed on the test sequences (real-world datasets). Standard errors are given in
brackets.
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Figure 3: Various metrics for all probability levels and coverage probabilities computed on the test sequences
(synthetic datasets).
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Figure 4: Various metrics for all probability levels and coverage probabilities computed on the test sequences
(real-world datasets).
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Figure 5: Various metrics for all probability levels and coverage probabilities computed on the test sequences
(real-world datasets).
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Figure 6: Various metrics for all probability levels and coverage probabilities computed on the test sequences
(real-world datasets).
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