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Abstract

Buildings are typically equipped with smart meters to measure electricity demand at regular

intervals. Smart meter data for a single building have many uses, such as forecasting and

assessing overall building performance. However, when data are available from multiple

buildings, there are additional applications that are rarely explored. For instance, we can explore

how different building characteristics influence energy demand. If each building is treated as a

random effect and building characteristics are handled as fixed effects, a mixed effects model

can be used to estimate how characteristics affect energy usage. In this paper we demonstrate

that producing one day ahead demand predictions for 123 commercial office buildings using

mixed models can improve forecasting accuracy. We experiment with random intercept, random

intercept and slope, and nonlinear mixed models. The predictive performance of the mixed

effects models are tested against naive, linear and nonlinear benchmark models fitted to each

building separately. This research justifies using mixed models to improve forecasting accuracy

and to quantify changes in energy consumption under different building configuration scenarios.

Keywords: time series forecasting, mixed-effects models, smart meters, energy, electricity

1 Introduction

Several papers have examined forecasting electricity demand for buildings by fitting separate

models to each building (Ghofrani et al. 2011; Gajowniczek & Ząbkowski 2014; Arora & Taylor

2016; Ben Taieb et al. 2016). While some have attempted to improve forecasts by leveraging the

hierarchical nature of electricity demand (Ben Taieb, Taylor & Hyndman 2020; Ben Taieb et al.

2017) few, if any, have explored improving forecast accuracy using a mixed effects framework.

Mixed effects models are useful when non-independence is observed in the data, which often

occurs when multiple observations are recorded from the same subject. If buildings behave

in a similar manner a well-specified mixed model may produce more accurate forecasts than
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individual models. Furthermore, a mixed-model framework allows us to quantify differences

between buildings which would not otherwise be possible when using a “building-specific”

modelling approach. A mixed effects approach opens the door to scenario analyses by allowing

us to estimate how demand might change under different equipment or usage scenarios.

This paper explores how electricity forecasting accuracy can be improved by using mixed effects

models. We examine if mixed models can produce forecasts as accurately as separate models fit

for each subject. We approach the problem in the context of producing one day ahead forecasts of

electricity demand for 123 commercial office buildings in Australia. Electricity demand readings

at 15-minute intervals are taken from smart meters located at each of the buildings. These

readings exhibit within-subject correlation which are well suited to modelling using mixed

effects models, which we explore here. When working with mixed effects models, each building

is treated as a random effect and building characteristics are treated as fixed effects. We attempt

to model the relationship between temperature and demand using both linear and spline based

methods.

To the author’s knowledge few papers have explored using mixed models in an electricity

demand forecasting role. Brabec et al. (2008) appears to be closest to this area. In their paper, a

nonlinear mixed effects model (NLME) was used to forecast daily gas demand for individual

customers. Predictors such as day of week and temperature were treated as random effects.

Their NLME model was benchmarked against ARIMAX and ARX approaches. The paper

concluded by saying there was no clear winner between the NLME and benchmark models and

that both potentially have strengths and weaknesses. Unfortunately, there are few other papers

within the energy field that use mixed effects models1 for forecasting.

Moving away from the energy sector there are more papers to draw from. Ibrahim & L’Ecuyer

(2013) compared the performance of fixed effects and mixed effects models when forecasting

call center arrivals. Making use of correlation structures within the data was shown to improve

forecast accuracy when tested against several benchmark models on real-world data sets. Frees

& Miller (2004) explored lottery sales forecasting by postcode using a linear mixed model

applied to longitudinal data. They derived best linear unbiased predictors for what they termed

longitudinal data mixed models. Random effects were incorporated for each subject and,

separately, each time period. When compared against an ordinary regression model (with

common intercept between all subjects) and a basic fixed effects model (with a different intercept

for each subject), both with AR(1) error structures, the mixed model that used both time and

1Some papers claim to use mixed models. However, this term is often applied to cases where a combination of
models have been used which is different to mixed effects models in the statistical sense.
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subject random effects (two-way error model) was found to be inferior when forecasting on an

out-of-sample test set. However, another one-way error components model that only included

treated subjects as random effects was found to produce the best forecasts overall. This suggests

that mixed models can compete with ordinary pooled regression models. However, the question

remains as to how well a mixed model would perform when compared to ordinary regression

models fit separately to each subject. Another paper that focused on call center forecasting

(Aldor-Noiman, Feigin & Mandelbaum 2009) used a mixed Poisson process to estimate future

arrival counts. Soyer & Tarimcilar (2008) had a similar aim and showed that a Bayesian approach

incorporating random effects was superior to a fixed effects model. These papers all point to the

viability of using mixed effects models for forecasting.

Few papers have attempted to assess the impact of differences in building characteristics using

statistical methods and smart meter data. To the author’s knowledge, only a previous paper

by Roach (2020) has looked into this using mixed effects models. Whereas that paper focused

on estimating demand impact profiles for building attributes at different times of the year, this

paper focuses on improving forecast accuracy for buildings with different characteristics.

Several papers have shown the relationship between electricity demand and temperature are

well modelled using nonparametric components such as cubic splines (Hyndman & Fan 2010;

Fan & Hyndman 2012). This paper uses a similar approach within a mixed model framework.

Other papers that explore semiparametric mixed models include Grajeda et al. (2016); Ugarte

et al. (2009); and Durbán et al. (2005). Durbán et al. (2005) is of particular note as it introduces

the concept of subject-specific curves using piecewise linear splines for longitudinal data. These

subject specific curves are nonlinear functions that are allowed to vary by each subject. In this

paper we first justify the use of subject-specific curves for modelling metered electricity demand

before building on the existing methodology using natural splines.

The main contribution of this paper is to present an approach to forecasting electricity demand

for individual buildings using a mixed effects framework. Furthermore, our methodology is

tested against several other benchmark models to quantify how forecasting accuracy is improved.

Finally, this paper serves to enrich the literature on forecasting with mixed effects models and

smart meter data.

The paper is structured as follows. Section 2 describes the data we are working with. Section 3

gives a detailed description of the models formulations and how they are assessed. Forecasting

results are presented in Section 4. Concluding remarks are given in Section 5.

Roach, Hyndman, Ben Taieb: 21 October 2020 4
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2 Data

We have time series and attribute data for 123 commercial office buildings located across

Australia. We focus on business days in our analysis as these are significantly more important

than non-business days for energy management. Non-business days typically have far less

demand than business days as equipment is non-operational. Note that our approach can be

applied to non-business days as well.

2.1 Time series data

Electricity demand data from 123 commercial office buildings in Australia are used to train and

validate our models. The electricity demand data is recorded at 15-minute intervals by smart

meters located at each building. The electricity demand is normalised by each building’s net

lettable area (NLA) to ensure demand is comparable between buildings. An example of a day

of smart meter readings from six buildings is shown in Figure 1. Temperature data recorded

at 15-minute intervals from the closest available weather station are also available for each

building.

The relationship between current temperature and electricity demand is shown in Figure 2

for two buildings at midday and midnight. There is a clear difference in this relationship

between the business and non-business periods. Furthermore, this relationship varies between

each building. The different relationships for each building necessitates the use of a nonlinear

demand response function that can adequately capture the unique response characteristics of

each building. To accomplish this, we model our data with mixed effects models and capture

the nonlinear building specific demand response using subject-specific curves. Note that when

splines are fitted independently for each building they can be very sensitive to outliers or data at

domain extremes. This also motivates our use of mixed effects models where data from multiple

buildings can be used to fit these relationships giving models that are more robust to outliers or

sparse data at covariate extremes.

One issue that arises from only including business days is the gap between Friday and Monday

in our demand time series. As we are including one-day lagged demand as one of our predictors,

observed values on Monday will use Friday demand values as their one-day lagged demand

(and similarly for two-day lagged demand variables). If this weren’t done and we instead used

non-working days, a very different relationship between Monday’s lagged demand variables

and current demand would be observed compared to other weekdays.

Roach, Hyndman, Ben Taieb: 21 October 2020 5
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Unlike lagged demand variables, which are used to capture operational changes in a building,

lagged temperature variables are used to capture thermal inertia. Thermal inertia is residual

heat energy that remains in a building after a run of warm weather (or conversely for cold

weather). For example, if several warm days occur sequentially, the expected demand can

increase as more cooling is typically required to maintain indoor environment quality. Hence,

lagged temperature variables are based off all days - not just working days. Monday’s lagged

temperature variables will include temperatures observed over the weekend.
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Figure 1: Normalised electricity demand of six commercial office buildings in Australia on 9 January,
2017. Only one day of data is shown although it is enough to see clear differences in the demand
profiles. Both the magnitude and volatility of demand varies greatly between buildings.

2.2 Attribute data

Building attribute data describes different characteristics of each building. The data are Boolean

and indicate if a particular attribute is absent or present. A previous paper (Roach 2020) that

examined important drivers of commercial office building demand identified the following

attributes as relevant:

• tenant feed

• DX system

• electric element heating

• centralised distribution.

For a more detailed discussion of each of these attributes refer to Roach (2020).
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Figure 2: Relationship between temperature and normalised electricity demand at midday and midnight
for two Australian office buildings during Summer. Logged values are shown as we use these
as our response variable when fitting models to enforce a positivity constraint. The relationship
between temperature and demand is different both between buildings and at different times of
the day.

3 Methodology

We focus on the problem of one day ahead electricity demand forecasting for commercial

buildings. This has important applications such as allowing facility managers to adequately

prepare a building for demand response (by adjusting set points and operational schedules) and

reducing peak demand to avoid high capacity2 or time of use charges.

Several linear and mixed effects models were tested to determine which produced the most

accurate forecasts conditional on selected features. Here we describe the various benchmarking

and mixed effects models and their formulations. All analysis was produced using the R

statistical programming language (R Core Team 2020). Mixed effects models were fit using the

lme4 package for mixed effects models (Bates et al. 2019). All code used to run this analysis has

been made available in the https://github.com/camroach87/1901-nlmets GitHub repository.

2Peak demand events over a certain time frame are often factored into a commercial building’s electricity tariffs.
These are known as capacity charges.
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Table 1: Model descriptions

Model Abbreviation Description Predictor Variables

Naive Naive Naive forecasting
model

Previous day’s
demand

Individual linear
regression

ILR Linear regression
models fit to each
building

Current temperature

Individual natural
splines

INS Natural spline
models fit to each
building

Current temperature

Pooled regression PR Regression model.
Used for feature
selection

Current temperature,
selected features

Random intercept RI Mixed effects model
with random
intercept

Current temperature,
selected features

Random intercept
and slope

RIS Mixed effects model
with random
intercept and slope

Current temperature,
selected features

Subject-specific
curves

SSC Mixed effects model
with subject-specific
curves

Current temperature,
selected features

Subject-specific
curves with
attributes

SSCATTR SSC with building
attributes included
as fixed effects

Current temperature,
selected features

3.1 Model formulation

To justify our final model we test several models that can be thought of as simpler versions. Each

model has a change introduced and the improvement in performance is used as justification

for each. As a starting benchmark, we fit a naive model that uses the previous day’s observed

values. The second model fit individual linear regression models to each building. The third

model also involves fitting a set of individual models but incorporate natural splines to model

the temperature and demand relationships. The fourth model is the first to be trained using

data from all the buildings and treats each building as a dummy variable. The fifth, sixth and

seventh models are random intercept, random slope and subject-specific curve models. Finally,

the eighth model is a subject-specific curve model that includes building attributes as fixed

effects. This is summarised in Table 1.

Due to the evolving nature of energy demand across the day we fit separate models for each

15-minute period of the day. This gives 96 models for each building when fitting individual

model formulations and 96 models for each mixed effects formulation.

Roach, Hyndman, Ben Taieb: 21 October 2020 8
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Throughout our modelling we use natural splines to fit the relationship between predictor

variables and demand. This differs somewhat from other studies on semiparametric mixed

effects models which use piecewise linear splines to model variable relationships (Durbán et al.

2005). An example for temperature and electricity demand is shown in Figure 3. We see that a

natural spline gives a more reasonable fit at the sparsely populated extremes compared to other

spline functions.

O

O

O

O

O

O

O

O
O

O

O

O

O

O O

O

O

O

O

O

O
O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O
O

O

O
OO O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O O

O

O

O

O

O

O
O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O
O

O

O
OO O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O O

O

O

O

O

O

O
O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O
O

O

O
OO O
O

O

O

O

O

O

O

O

Linear spline Cubic spline Natural spline

20 25 30 35 20 25 30 35 20 25 30 35

1.0

1.5

Temperature (°C)

Lo
g 

no
rm

al
is

ed
 e

le
ct

ric
ity

 (l
og

(W
h

m
2 ))

Figure 3: Linear and cubic splines with three degrees of freedom fit to one building’s demand data during
Summer at 11:45 am. We observe that the linear spline results in severe kinks in the relationship
which seems unrealistic. The cubic spline gives a much smoother fit and appears to be the more
reasonable option. The natural spline is better again as it does not have the dramatic dip in
predicted demand that the cubic spline has for high temperatures.

Predictors are centered and scaled prior to training models. The exact features that are used for

models are determined through our feature selection approach (Section 3.2). Models are fit by

maximising the log-likelihood criterion.

3.1.1 Individual models

Individual models serve as benchmark models to determine if moving to a mixed models

framework improves prediction accuracy. Separate models are fit for each building. Note that a

subscript for building has been omitted from each of these individual models to improve clarity.

Naive forecast model The simplest benchmark is a naive forecasting model, where the previ-

ous day’s values are used. This is often a surprisingly effective forecasting approach (Hyndman

Roach, Hyndman, Ben Taieb: 21 October 2020 9
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& Athanasopoulos 2018). The demand of a building at time t is given by

yt = yt−24 hours + εt, εt ∼ N(0, σ2).

Note that since we have restricted ourselves to business days, t− 24 hours is a slight abuse of

notation and is used to represent the observed values from the last business day. So a forecast for

Monday will use observed values from the previous Friday. Using observed values from Sunday

would produce a much weaker benchmark due to different demand dynamics on working and

non-working days.

Individual linear regression model A simple benchmark model is created by fitting a linear

regression model to each building and period of the day. The demand of a building at time t is

given by

log yt = β0,p + β1,pw0,t + εt, εt ∼ N(0, σ2
p),

where p is the 15-minute period of the day at time t, w0,t is the scaled temperature experienced3

at time t and εt is the residual. We call these our “Individual Linear Regression” (ILR) models.

Individual natural spline model A linear relationship between temperature and electricity

demand may not be sufficient to adequately capture the relationship between the two. Nat-

ural cubic splines allow a more flexible relationship between predictors and the response. In

this model the log demand of each building is modelled separately using natural splines. A

building’s demand based on temperature and other selected predictors is given by

log yt = fp(w0,t) + εt, εt ∼ N(0, σ2
p),

where fp is a smooth function modelling the relationship between w0,t and the logged demand

for period p. The function fp is modelled using natural cubic splines with three degrees of

freedom. Knots are set at the 33.3rd and 66.6th quantiles of w0,t. We refer to this set of models as

the “Individual Natural Spline” (INS) models.

We use natural splines with three degrees of freedom as our smooth functions. Natural splines

are chosen over other types as they enforce the constraint of linearity beyond the boundary

points, which seems a fair assumption when considering the behaviour of electricity demand

consumption in relation to extreme temperatures (see Figure 3 for an illustration). We wish

to create a parsimonious model and assuming anything beyond a linear relationship in the

3The 0 subscript denotes no lag and is consistent with Table 2 with the building subscript dropped.

Roach, Hyndman, Ben Taieb: 21 October 2020 10
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Table 2: Predictor variables evaluated during feature selection when determining Pt.

Variable xb,i,t Lag (15-minute periods) Description

wb,0,t 0 Scaled current temperature.
wb,12,t 12 Scaled temperature lagged by 3 hours.
wb,24,t 24 Scaled temperature lagged by 6 hours.
wb,48,t 48 Scaled temperature lagged by 12 hours.
wb,96,t 96 Scaled temperature lagged by 24 hours.
wb,192,t 192 Scaled temperature lagged by 2 days.
wb,288,t 288 Scaled temperature lagged by 3 days.
w+

b,t Maximum scaled temperature over last 24 hours.
w−b,t Minimum scaled temperature over last 24 hours.
w̄b,t Average scaled temperature over last 3 days.
yb,96,t 96 Scaled actual demand lagged by 1 day.
yb,192,t 192 Scaled actual demand lagged by 2 days.
yb,672,t 672 Scaled actual demand lagged by 1 week.

extremes seems contrary to that aim. Failing to enforce the linearity constraint may result in

unusual relationships being predicted if extrapolating beyond the training data.

3.1.2 Pooled regression model

Our pooled regression model is fit using data from all buildings. One model is fit for each

15-minute period of the day which is then used to predict demand of each building b at time

t. Note that since all buildings are included in the model, we introduce the b subscript for

buildings.

Additional predictor variables are introduced in this model, such as lagged temperature vari-

ables; maximum, minimum and average temperatures; and lagged demand. When doing one

day ahead forecasts we do not have demand observations within the last 24 hours to use as lags

and so we restrict our lagged demand variables to 1 day, 2 days and 3 days. The temperature

variables can have 1-24 hour lags as temperature forecasts can be used to supplement the already

observed data. Note that in this paper we restrict ourselves to using actual temperature data and

not forecast temperature data to ensure our results are dependent on model formulations and

not on any errors in temperature forecasts. In practice, forecast temperature data can be used

instead. A description of each predictor is presented in Table 2. We denote this set of predictor

variables as Pt, which contains the selected variables for the 15-minute period of day and month

at time t. The exact combination of variables is chosen via our feature selection methodology

described in Section 3.2. This model is used when selecting features as it is much faster to train

than a mixed effects model.

Roach, Hyndman, Ben Taieb: 21 October 2020 11
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The demand of building b at time t is given by

log yb,t = ∑
xb,i,t∈Pt

fi,p(xb,i,t) + αb,p + εb,t, εb,t ∼ N(0, σ2
p),

where xb,i,t is the value of building b’s ith predictor variable at time t and fi,p is a smooth function

modelling the relationship between xb,i,t and the logged demand for period p. Again, the

function fi,p is modelled using natural cubic splines with three degrees of freedom and knots set

at the 33.3rd and 66.6th quantiles of each predictor xb,i,t. A dummy variable αb,p has been added

to account for differences in each building’s consumption. We call this our “Pooled Regression”

(PR) model.

We do not estimate a separate smooth relationship between predictor variables and demand for

each building in the pooled model. Instead, we estimate the population’s relationship. So, for

the ith predictor we construct a smooth function fi,p for all buildings instead of a set of smooth

functions fb,i,p for each building.

3.1.3 Mixed models

Having specified our framework for fitting separate models to each building it is now time

to explore fitting mixed models. In each mixed effects model that follows, all buildings are

included by treating each as a random effect. In section 4.2 we show that mixed models improve

prediction accuracy and have the added benefit of allowing us to quantify the impact of building

attributes on electricity demand.

Originally, random effects were incorporated into each of the lagged temperature and lagged

demand variables, but this resulted in very poor fits presumably due to the high dimensionality.

Instead, as with the PR model, we model the population relationship for all selected predictor

variables and allow for subject-specific differences using random intercepts, random slopes and

subject-specific curves (based on current temperature).

As with the PR model, we include subscripts b to denote each building. Unlike the individual

formulations, which had separate models fit to each building, all buildings are used when

training the mixed effects models and so we include an additional subscript to denote this.

Again, to capture changing demand characteristics across the day, separate models are fit for

each 15-minute period of the day giving 96 models for each mixed effects formulation.

Roach, Hyndman, Ben Taieb: 21 October 2020 12
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Random intercept model The simplest mixed effects model is a random intercept (RI) model.

We model the log of the demand by

log yb,t = ∑
xb,i,t∈Pt

fi,p(xb,i,t) + ub,p + εb,t,

εb,t ∼ N(0, σ2
ε,p), ub,p ∼ N(0, σ2

u,p),

where ub,p is a random effect that controls the intercept of the model. This is similar in form to

the pooled regression model, with the dummy variable αb,p replaced by the random intercept

ub,p. We don’t use this model for feature selection in Section 3.2 as it takes much longer to fit

than the pooled regression model.

Random intercept and slope model Expanding on this is the random intercept and slope (RIS)

model which has a random effect for both the intercept and slope of the model. We model

demand by

log ybt = ∑
xb,i,t∈Pt

fi,p(xb,i,t) + ub,p,1 + ub,p,2wb,0,t + εb,t,

εb,t ∼ N(0, σ2
ε,p), (ub,p,1, ub,p,2)

T ∼ N(0, Σ), Σ =

 σ2
u,1 σu,1,2

σu,1,2 σ2
u,2

 .

Here we have included a random slope based on scaled current temperature, wb,0,t. The random

effects ub,p,1 and ub,p,2 control the subject-specific differences for intercept and slope, respectively.

The matrix Σ is a variance-covariance matrix for the random effects. It includes terms for the

variance of intercepts (σ2
u,1), the variance of slopes (σ2

u,2) and the covariance between intercepts

and slopes (σu,1,2).

Subject-specific curves model As the relationship between demand and temperature can be

quite nonlinear we also explore modelling the subject-specific differences in the temperature

and energy relationship using splines. We call this model the subject-specific curve (SSC) model

in keeping with Durbán et al. (2005). Note that we have modified their model to work with

natural cubic splines as this gives a better fit when modelling the temperature and electricity

relationship compared to penalized linear splines (Figure 3). It is given by

log ybt = ∑
xb,i,t∈Pt

fi,p(xb,i,t) + gb,p(wb,0,t) + εb,t,

εb,t ∼ N(0, σ2
ε,p).

Roach, Hyndman, Ben Taieb: 21 October 2020 13
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As with our other models we use natural cubic splines with three degrees of freedom for our

smooth function fi,p. The function gb,p is a subject specific curve and is defined as

gb,p(x) = ub,p,0 +
3

∑
k=1

ub,p,kBp,k(x),

(
ub,p,0, . . . , ub,p,3

)
∼ N(0, Σ),

where Bp,k are cubic B-spline basis functions and ub,p,k are correlated random effects. This

model allows us to capture separate temperature and electricity relationships for each building

while also including the population relationships between electricity demand and other selected

predictors.

Subject-specific curves with attributes model Here we introduce several new variables into

our model. These variables are the set of building attributes discussed in Section 2.2 which we

denote by A. We treat each of these attributes as a fixed effect. We refer to this model as the

subject-specific curves with attributes (SSCATTR) model.

Our model is given below

log ybt = ∑
xb,i,t∈Pt

fi,p(xb,i,t) + gb,p(wb,0,t) + ∑
a∈A

βaxb,a + εb,t,

εb,t ∼ N(0, σ2
ε,p),

where all terms and functions are defined as in the SSC model. The new fixed effect xb,a is

a Boolean variable that indicates if attribute a is present for building b. Including building

attributes as fixed effects allows one to conduct scenario analyses by predicting the expected

demand with and without certain attributes present.

3.2 Feature selection

Carrying out feature selection for such a wide range of models was a difficult problem to

approach. We take the view that it is best to keep features consistent between each of the models

in order to fairly compare each during the validation stage. Hence, each model’s performance

is conditional on the same set of predictor variables. As we don’t expect the most important

predictors to be changing rapidly throughout the year we only conduct feature selection for

the first business day of each month. The selected predictors are then used for all business day

forecasts in the month.
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Table 2 shows a list of demand variables that were considered for our modelling. Lagged

temperature variables are used to model the impact of thermal inertia in buildings. For example,

high overnight temperatures in summer may result in high demand on the following day due

to the increased cooling loads required to maintain suitable indoor environment quality. The

maximum and minimum temperatures from the last 24 hours are also considered, as well as the

mean temperature over the previous three days. Lagged demand values of 1, 2 and 7 days are

included to capture any serial correlation in the observed demand time series.

Numerous studies have already shown the link between electricity demand and current temper-

ature (Ben Taieb et al. 2016; Fan & Hyndman 2012; Roach 2019; Hong et al. 2016; Hong, Xie &

Black 2019). Hence, we chose to conduct feature selection conditional on the current temperature

being included. There were several reasons for this:

• Much of the literature on load forecasting already identifies the importance of current

temperature in forecasting demand and we can see clear nonlinear relationships in Figure

2.

• As temperature is strongly correlated with recent values there were occasions when

the current temperature would not be selected but a slightly lagged variable would be.

This seemed unrealistic and was likely caused by noise in the data rather than a lagged

temperature being a better predictor than actual temperature.

• Forcing current temperature to be included reduced the number of feature combinations

to search through by a factor of 2.

We use the pooled linear regression model for feature selection as it is quick to fit using OLS

and allows us to model buildings by using a dummy variable for each. Using a linear model

also has the advantage of allowing us to efficiently compute the leave-one-out cross-validation

(LOOCV) scores using (Seber & Lee 2012)

CV =
1
n

n

∑
i=1

(
ei

1− hi

)2

,

where ei are the residuals of the model and hi are the diagonal elements of the hat-matrix

H = X (X′X)−1 X′.

Training data are comprised of business days within a window of 120 days prior to the month

we wish to select variables for. As our experimental setup for the validation phase involves one

day ahead forecasts, this variable selection prevents us from using any data from the future.
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For example, when forecasting for any date in January, only data from the months preceding

January would have been used to select predictors.

We use best subset selection during feature selection. Given m predictors we choose the com-

bination of these that produce the best R2 scores. Once the best model based on R2 has been

determined for each set of m predictors, we use the LOOCV score to determine the overall best.

The LOOCV score is chosen as it gives an estimate of the out of sample performance of our

models. Figure 4 shows the LOOCV scores for each predictor set of size m. During feature

selection we chose to avoid greedy approaches such as forward or backward stepwise selection;

or approaches that work systematically through lagged predictor variables (Hyndman & Fan

2010). Naturally, greedy methods have computational benefits, but it is interesting to observe

which features are chosen when all possible combinations are assessed.

A key point to note is that feature selection was done on the predictor variables and not the

spline basis functions. Doing so would destroy the properties of a spline if only a subset of its

basis functions were to be selected.

Sep Oct Nov Dec

May Jun Jul Aug

Jan Feb Mar Apr

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0.03

0.05

0.10

0.03

0.05

0.10

0.03

0.05

0.10

Number of variables

LO
O

C
V

 s
co

re
s

25

50

75

Period

Figure 4: LOOCV scores (log scale) for each month. In general, the LOOCV errors initially decrease as
variables are added, but begin to increase slightly at a certain point for each period.

It should be noted that feature selection could be further improved for the mixed effects models

by proceeding with a step-wise selection process after the above process has completed for the

pooled model. Features can be added or removed based on if an appropriate out of sample
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accuracy score improves. This allows us to benefit from the relative speed of fitting via OLS

before further fine-tuning with a greedy selection algorithm.

3.3 Validation

3.3.1 Rolling origin 1-day ahead forecasts

We used a historical training period comprised of recent observations for each building. Business

days from a sliding window of length 120 days were selected as training data for each model.

Using recent observations allows recent operational changes or trends to be captured in each

model.

If, for a given 1-day ahead forecast, a building had less than 40 days of training data present then

it was removed from the forecast. This was done to accommodate buildings that had recently

been included in the data set or where the data had been censored. Training a building with less

than 40 days of data sometimes resulted in severe overfitting.

3.3.2 Error measures

To assess the forecasting accuracy of each of our models we use four common error metrics.

1. Mean absolute error: MAE = mean (|yt − ŷt|).

2. Mean absolute percentage error: MAPE = mean
(∣∣∣ 100(yt−ŷt)

yt

∣∣∣).

3. Symmetric mean absolute percentage error: sMAPE = mean
(

200|yt−ŷt|
yt+ŷt

)
.

4. Mean absolute scaled error: MASE = mean
(∣∣∣ yt−ŷt

mean(|yt−yt−1|)

∣∣∣).

These are all well established forecasting metrics. Advantages and disadvantages of each are

described in Hyndman & Koehler (2006).

When comparing these metrics in Section 4.2, we find that the SSC and SSCATTR models

produce the best point forecasts. To establish that this result is statistically significant we also

carry out Diebold-Mariano tests against the ILR model in Section 4.3.

4 Results

In order to build a better understanding of how a mixed model framework improves upon

fitting individual models to each building we need to assess each model’s performance. To

do so, we create one day ahead ex-post forecasts and calculate the MAE, MAPE, sMAPE and

MASE for each. We focus on ex-post forecasting as we wish to examine error caused by model
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specification and ignore errors caused by incorrect weather forecasts, as would be the case in an

ex-ante forecasting scenario.

4.1 Variables chosen via feature selection

Figure 5 show the number of times each variable is selected for all months of the year. There

is a lot of variation in the selected predictors, even between adjacent 15-minute periods. By

overlaying all of the months we do observe some structure. Perhaps the most noticeable

characteristic is that temperature variables are selected more often during business hours,

which shows the influence temperature has on demand during the day and how temperature

influences occupant behaviour. Outside of these hours we see fewer temperature variables

selected. Another point of interest is that during business hours, lagged demand variables are

selected less often than for non-business hours. It would appear as though serial correlation in

the demand time series is a more useful predictor during non-business hours than temperature.

Thermal inertia does not appear to influence demand as much during non-business hours.

D
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perature lags
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Scaled Wh (3 day lag)
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Figure 5: Feature selection for all months. The number of times a variable has been selected across
all 12 months is indicated by the transparency of each tile for a given period. In general,
temperature features are selected more often during business hours. During non-business
hours, temperature features are selected less often, but lagged demand variables are almost
always selected.
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4.2 Forecasting accuracy

Table 3 shows the MAE, MAPE, sMAPE and MASE for each model across the entire day, during

business hours (7:00 am to 7:00 pm) and during non-business hours (7:00 pm to 7:00 am).

The Naive model has the worst forecasting accuracy. All of the benchmark and mixed effects

models outperform it. Overall, the best performing model is the SSC model, closely followed

by the SSCATTR model. These two models consistently outperform others across all metrics.

Figure 6 shows an example of forecasts produced from the SSC model. The actual demand

values and previous day’s demand values (Naive model) are also plotted. We can see that the

SSC model tends to track the general shape of each profile well and does not predict erratic

spikes in demand.

Given the SSC and SSCATTR models outperform each of our benchmarks it seems reasonable

to conclude that forecasting with mixed effects models is a reasonable practice that should be

encouraged when data are available for similar subjects.
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Figure 6: One day ahead forecasts for 23 August, 2017. The Naive (yesterday’s actuals) and SSC models
are shown. The naive model often includes erratic spikes whereas the SSC model tends to
produce a smoother profile.

4.3 Diebold-Mariano test

Here we perform a one-sided Diebold-Mariano test (Diebold & Mariano 2002) to determine if

our final model (SSCATTR) is more accurate than the baseline model (ILR). We perform a test
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Table 3: Forecasting accuracy measures for each model across the entire day, business hours (7:00 am to
7:00 pm) and non-business hours (7:00 pm to 7:00 am).

Model MAE MAPE sMAPE MASE

All hours
ILR 0.420 14.8 13.2 0.946
INS 0.401 14.5 12.8 0.902
Naive 0.444 15.3 13.4 1.000
PR 0.415 13.9 12.5 0.936
RI 0.413 13.9 12.4 0.930
RIS 0.384 13.3 11.8 0.865
SSC 0.374 13.1 11.6 0.843
SSCATTR 0.375 13.1 11.6 0.844

Business hours
ILR 0.637 16.8 14.0 0.920
INS 0.601 16.2 13.4 0.869
Naive 0.692 17.9 15.3 1.000
PR 0.652 16.8 14.3 0.942
RI 0.648 16.7 14.2 0.937
RIS 0.595 15.8 13.2 0.860
SSC 0.576 15.4 12.9 0.833
SSCATTR 0.578 15.4 12.9 0.835

Non-business hours
ILR 0.204 12.8 12.3 1.040
INS 0.201 12.7 12.2 1.020
Naive 0.196 12.7 11.5 1.000
PR 0.179 11.1 10.7 0.914
RI 0.178 11.0 10.6 0.907
RIS 0.174 10.8 10.4 0.885
SSC 0.172 10.7 10.4 0.877
SSCATTR 0.172 10.7 10.4 0.876

for each period of the day (Table 4). When the test is applied to each period of the day we see

that our SSCATTR model produces forecasts that are significantly better than the ILR model.

5 Conclusion

This paper explores the possibility of using mixed effects models in a forecasting role. We first

specified several different models. A best subset selection approach was proposed to determine

which predictor variables should be used. Feature selection was carried out for each month of

the year and 15-minute period of the day, which allowed us to observe how the importance of

lagged temperature and demand variables changed throughout the day.
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Table 4: Diebold-Mariano test to compare forecast accuracy of ILR and SSCATTR models. Alternative
hypothesis is SSCATTR model is more accurate than ILR model. All periods tested separately.
Only every fourth model falling on the hour is shown for legibility.

Period DM statistic p-value Significance

4 1.062 0.144
8 -0.371 0.645

12 -0.109 0.543
16 -0.733 0.768
20 -0.548 0.708

24 2.872 0.002 **
28 3.123 < 0.001 ***
32 1.513 0.065 .
36 1.040 0.149
40 4.281 < 0.001 ***

44 3.580 < 0.001 ***
48 2.982 0.001 **
52 3.422 < 0.001 ***
56 3.163 < 0.001 ***
60 4.203 < 0.001 ***

64 4.742 < 0.001 ***
68 7.260 < 0.001 ***
72 7.913 < 0.001 ***
76 14.236 < 0.001 ***
80 9.641 < 0.001 ***

84 10.593 < 0.001 ***
88 9.196 < 0.001 ***
92 7.242 < 0.001 ***
96 4.443 < 0.001 ***

We fit models to 123 buildings across Australia. Separate models for each building were fitted

as a benchmark. The overall predictive power of several mixed effects models were assessed

against this benchmark. One day ahead forecasts were produced for business days over a year

using all forecast methods. Based on the MAE, MAPE, sMAPE and MASE scores of each model

the SSC and SSCATTR models performed best. We concluded that predicting electricity demand

using nonlinear mixed effects models can improve forecast accuracy.
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