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ABSTRACT
Forecasting a large set of time series with hierarchical aggregation
constraints is a central problem for many organizations. However, it
is particularly challenging to forecast these hierarchical structures.
In fact, it requires not only good forecast accuracy at each level of
the hierarchy, but also the coherency between di�erent levels, i.e.
the forecasts should satisfy the hierarchical aggregation constraints.
Given some incoherent base forecasts, the state-of-the-art methods
compute revised forecasts based on forecast combination which
ensures that the aggregation constraints are satis�ed. However,
these methods assume the base forecasts are unbiased and con-
strain the revised forecasts to be also unbiased. We propose a new
forecasting method which relaxes these unbiasedness conditions,
and seeks the revised forecasts with the best tradeo� between bias
and forecast variance. We also present a regularization method
which allows us to deal with high-dimensional hierarchies, and
provide its theoretical justi�cation. Finally, we compare the pro-
posed method with the state-of-the-art methods both theoretically
and empirically. The results on both simulated and real-world data
indicate that our methods provide competitive results compared to
the state-of-the-art methods.
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•Mathematics of computing→ Time series analysis; • Com-
puting methodologies→ Regularization.

KEYWORDS
time series, hierarchical forecasting, regularization, sparsity

ACM Reference Format:
Souhaib Ben Taieb and Bonsoo Koo. 2019. Regularized Regression for Hier-
archical Forecasting Without Unbiasedness Conditions . In The 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19),

∗Souhaib is an Adjunct Senior Research Fellow in the Department of Econometrics
and Business Statistics at Monash University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330976

August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3292500.3330976

1 INTRODUCTION
Forecasting a large set of time series with hierarchical aggregation
constraints is a central problem for many organizations. For exam-
ple, the store-level sales of a multinational company can be grouped
in a hierarchical structure composed of countries, cities and regions
[13]. Smart grid is another context where a hierarchy with di�erent
levels of aggregation naturally arises. The bottom level can include
demand for single households or buildings and supply from single
solar panels or wind turbines, while the intermediate levels could be
the total demand and supply of entire regions, states and countries
as a whole [1]. The next Figure gives an example of hierarchical
aggregation.
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It is particularly challenging to forecast these hierarchical struc-
tures (see Section 2.1). In fact, in addition to providing good forecast
accuracy, it is often essential for decision-making purposes to pro-
duce “coherent” forecasts, i.e. the forecasts of aggregates should be
equal to the sum of the corresponding disaggregated forecasts. Un-
fortunately, independently forecasting all the series in a hierarchy,
also called base forecasts, is unlikely to deliver coherent forecasts.
Another feature of these hierarchical structures is the highly noisy
series in the most disaggregated bottom level. As a result, comput-
ing bottom-up forecasts, i.e. summing the individual bottom-level
forecasts is unlikely to provide good accuracy at upper levels in the
hierarchy [11].

The state-of-the art methods for hierarchical forecasting combine
both base and bottom-up forecasts [10]. Speci�cally, starting from
(probably) incoherent base forecasts, coherent revised forecasts are
computed by applying forecast combination and using a bottom-up
procedure. In other words, the base forecasts are adjusted so that
they become coherent.

[17] proposed a new forecasting method called MinT which com-
putes the optimal combination weights for the revised forecasts.
More precisely, MinT assumes the base forecasts are unbiased and
seeks the best combination weights under the constraint that the
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revised forecasts will also be unbiased. In other words, MinT seeks
the revised forecasts with minimum variance among all the unbi-
ased revised forecasts (see Section 2.2). Although the MinT optimal
combination weights are available in closed-form, the two condi-
tions are hard to justify in practice. In fact, the base forecasts can be
biased and revised forecasts with low mean squared forecast errors
is often more important than the unbiasedness property.

We make the following contributions to hierarchical forecasting:

• First, we propose a new forecasting method which does not
assume or constrain the base or the revised forecasts to be
unbiased. To do so, we formulate the hierarchical forecasting
problem as an empirical risk minimization problem which
directly minimizes the mean squared forecast errors. We also
provide the associated closed-form solution (see Section 3.1).

• Second, we address the problem of forecasting high dimen-
sional hierarchies, i.e. hierarchies for which the total number
of series is much larger than the number of historical ob-
servations. We adjust our objective function by adding a
regularization term and provide its theoretical justi�cation.
We also derive its asymptotic properties including its limiting
distribution (see Section 3.2).

• Third, we provide a comparison between our methods and
the state-of-the-art MinT method, including similarities and
di�erences, as well as the asymptotic properties of the meth-
ods. For example, we show that MinT is a particular case of
our method, and under certain conditions, it is asymptoti-
cally equivalent to our method (see Section 4).

• Finally, we evaluate and compare the di�erent hierarchical
forecasting methods using both simulated and real-world
data sets (see Section 5).

2 PRELIMINARIES
2.1 Hierarchical Forecasting
We let bt 2 Rm represent the observations at time t for them series
in the most disaggregated (bottom) level. Then at = Abt 2 Rk con-
tains the observations at time t for the k aggregated series, where
A 2 {0, 1}k⇥m . Each entry Ai j is equal to 1 if the ith aggregate
series contains the jth bottom-level series, where i = 1, . . . ,k and
j = 1, . . . ,m. Finally, Ät = Sbt = (a

0

t b
0

t )
0

2 Rn contains observa-
tions both at the aggregate and bottom levels, where S 0 =

⇥
A0 Im

⇤
and Im is anm ⇥m identity matrix. To avoid pathological hierar-
chies, we will assume that m � 2, k � 1 and

Õm
j=1Ai, j > 1 for

i = 1, . . . ,k .
Figure 1 gives the tree and the matrix representation of a hi-

erarchical time series with m = 4 bottom level series with bt =
(�aa,t ,�ab,t ,�ba,t ,�bb,t )

0, and k = 3 aggregate series with at =
(�t ,�a,t ,�b,t )

0, �t = �a,t + �b,t , �a,t = �aa,t + �ab,t and �b,t =
�ba,t + �bb,t .

While IT = {Ä1,Ä2, . . . ,ÄT } denotes data observed up to time
T , let Ä̂T (h) denote h-period ahead forecasts based on IT and h =
1, . . . ,H where h is the forecast horizon. The optimal h-period
ahead forecasts which minimizes the conditional expectation:

E
⇥
kÄT+h � Ä̂T (h)k

2
2 |IT

⇤
, (1)

�t

�a,t

�aa,t �ab,t

�b,t

�ba,t �bb,t

S =

26666664

1 1 1 1
1 1 0 0
0 0 1 1

I4

37777775

Figure 1: The tree and the matrix representation of a hierar-
chical time series withm = 4 bottom-level series and k = 3
aggregate series.

where k · kp denotes an Lp norm over the relevant space, are given
by

µT (h) = E[ÄT+h |IT ] = S E[bT+h |IT ]. (2)

See [6] for more details on optimal forecasts.
In other words, if (1) is the error measure, any hierarchical fore-

casting method aims to provide the best estimate of µT (h).
A natural plug-in estimator for expression (2), known as bottom-

up (BU), is given by

Ä̂T (h) = S b̂T (h), (3)

where b̂T (h) is an estimate of E[bT+h |IT ]. The bottom-up method
forecasts each of the bottom-level series, and then uses simple
aggregation to obtain forecasts at higher levels of the hierarchy.
Although this method is conceptually simple, it can provide poor
forecasts on highly disaggregated and noisy data, especially at
upper levels of the hierarchy.

Another approach, known as base, consists in forecasting all
series in the hierarchy without considering the hierarchical con-
straints. In other words, we compute

Ä̂T (h) = (âT (h)
0

b̂T (h)
0

)
0

, (4)

where âT (h) and b̂T (h) are estimates ofE[aT+h |IT ] andE[bT+h |IT ],
respectively. This approach has the advantage that the typical poor
forecasts for highly noisy series at the bottom level will not a�ect
the forecasts for the series at upper levels of the hierarchy. However,
it is unlikely that the resulting set of forecasts will be coherent, i.e.
satisfy the aggregation constraints âT (h) = Ab̂T (h). Imposing the
aggregation constraints seems sensible since the optimal forecasts
in expression (2) are coherent by de�nition. Furthermore, coherent
forecasts will allow coherent decisions over the entire hierarchy.

2.2 The MinT approach to hierarchical
forecasting

The state-of-the art method for hierarchical forecasting combines
the best of both bottom-up and base forecasts, given in (3) and
(4), respectively. Starting from a set of (probably incoherent) base
forecasts Ä̂T (h), [10] proposed the computation of revised forecasts

Ä̃T (h) = SPÄ̂T (h), (5)

for some appropriately chosen matrix P 2 P ✓ Rm⇥n where P is
the domain of P . This approach has multiple advantages: (1) the
forecasts are coherent by construction; (2) a forecast combination
from all levels is applied through the weight matrix P ; and (3) many
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hierarchical forecasting methods are represented as particular cases,
including the bottom-up forecasts, for which

P =
⇥
0m⇥k | Im

⇤
, (6)

where 0m⇥k is anm ⇥ k zero matrix.
More recently, [17] proposed to optimally combine the base fore-

casts. Speci�cally, assuming the base forecasts Ä̂T (h) are unbiased,
[17] computes the weight P giving the minimum variance unbi-
ased revised forecasts. In other words, assuming E[Ä̂T (h)|IT ] =
E[ÄT+h |IT ], denoted as A1, [17] considered the following opti-
mization problem:

min
P 2P

E
⇥
kÄT+h � Ä̃T (h)k

2
2 |IT

⇤
subject to E[Ä̃T (h)|IT ] = E[ÄT+h |IT ] (C1). (7)

Under the unbiasedness conditions, A1 and C1, [17] showed
that minimizing (7) reduces to the following problem:

min
P 2P

Tr(Var[ÄT+h � Ä̃T (h)|IT ]) subject to SPS = S, (8)

where Tr(·) denotes the trace of a matrix.
The previous optimization problem has a closed-form solution

given by
P⇤ = (S

0

W �1
c S)�1S

0

W �1
c , (9)

where W �1
c is the Moore-Penrose generalized inverse of Wc =

E[êT (h)êT (h)
0

|IT ] and êT (h) = ÄT+h � Ä̂T (h). We refer to this
approach as the infeasible MinT (minimum trace) reconciliation
given thatWc is unavailable in practice.

In [17], the authors proposed to compute

P̂MinT = (S
0

Ŵ �1S)�1S
0

Ŵ �1, (10)

where Ŵ is an estimate ofWc . A natural estimator could be Ŵ =

T�1 ÕT
t=1 êt (h)êt (h)

0

. However, sinceWc is hard to estimate for
h > 1, [17] assumedWc = khW

(1)
c where kh > 0 andW (1)

c is the
covariance matrix of the one-step-ahead base forecast errors, i.eh =
1. Among the various covariance estimators forW (1)

c considered in
[17], the most e�ective one is the shrinkage estimator with diagonal
target given by

Ŵ = (1 � �)Ŵs + �Ŵd, Ŵs =
1
T

T’
t=1

êt (1)êt (1)
0

, (11)

where Ŵd = diag(Ŵs ) and � 2 (0, 1]. This covariance matrix is
always invertible which is particularly useful for the computation
of (9) when n > T or n = O(T ) since thenŴs is singular, and hence
non-invertible.

3 A NEWMETHOD FOR HIERARCHICAL
FORECASTING

3.1 Relaxation of the unbiasedness
assumptions

We can decompose the objective function of MinT in (7) as

E
⇥
kÄT+h � Ä̃T (h)k

2
2 |IT

⇤
(12)

= kSP(E[Ä̂T (h)|IT ] � E[ÄT+h |IT ]) + (S � SPS)E[bT+h |IT ]k22
(13)

+ Tr(Var[ÄT+h � Ä̃T (h)|IT ]), (14)

where (13) and (14) are the bias and variance terms of the revised
forecasts Ä̃T (h), respectively.

Since MinT assumes the base forecasts are unbiased, the �rst
term in (13) cancels. And since MinT requires the revised forecasts
to be unbiased, equivalently S = SPS , the last term in (13) also
cancels. As a result, minimizing (12) reduces to minimizing (14) with
the constraint S = SPS . This is exactly the optimization problem
given in (8).

We propose a new forecasting algorithm which do not impose
the two unbiasedness conditions of MinT, A1 and C1. In other
words, we do not assume the base forecasts are unbiased, and we
do not seek to produce the minimum variance unbiased revised
forecasts. Instead, we aim to �nd the best tradeo� between bias and
estimation variance of the revised forecasts by directly minimizing
the mean squared forecast errors in (12).

Let Ä̂t (h) be the h-period ahead base forecasts based on It =
{Ä1,Ä2, . . . ,Ät } computed for t = T1, . . . ,T � h where T1 < T is
the number of observations used for model �tting. We consider the
following empirical risk minimization (ERM) problem:

min
P 2P

LT (P), (15)

where

LT (P) =
1

(T �T1 � h + 1)n

T�h’
t=T1

kÄt+h � SPÄ̂t (h)k
2
2 , (16)

=
���Y � Ŷ P

0

S
0
���2
F
/Nn, (17)

where k·kF is the Frobenius norm de�ned as kX kF =
p
Tr(X 0X ),

N = T �T1 � h + 1, and

Y = [ÄT1+h ,ÄT1+h+1, . . . ,ÄT�h ]
0

2 RN⇥n ,

Ŷ = [Ä̂T1 (h), Ä̂T1+1(h), . . . , Ä̂T�h (h)]
0

2 RN⇥n .

P���������� 1. If the matrix Ŷ
0

Ŷ is invertible, the solution to (15)
is given by

P̂ERM = (S
0

S)�1S
0

Y
0

Ŷ (Ŷ
0

Ŷ )�1 (18)

= B
0

Ŷ (Ŷ
0

Ŷ )�1, (19)

where S
0

S is invertible by construction.

P����. Let vec(X ) denote the vectorization of the matrix X ,
i.e. all the columns of X are sequentially stacked in a one-column
vector. Using the fact that kX k

2
F = kvec(X )k

2
2, we can write (17)

multiplied by Nn as���Y � Ŷ P
0

S
0
���2
F
=

���vec(Y ) � vec(Ŷ P
0

S
0

)

���2
2

(20)

=
���vec(Y ) � (S ⌦ Ŷ )vec(P

0

)

���2
2
, (21)

The vector vec(P 0
) which minimizes (21) is given by

vec(P 0
) =

h
(S ⌦ Ŷ )

0

(S ⌦ Ŷ )
i�1

(S ⌦ Ŷ )
0

vec(Y ) (22)

=
h
(S

0

S)�1S
0

⌦ (Ŷ
0

Ŷ )�1Ŷ
0
i
vec(Y ) (23)

= vec
⇣
(Ŷ

0

Ŷ )�1Ŷ
0

YS(S
0

S)�1
⌘
. (24)
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Unvectorizing and transposing (24) gives expression (18). Finally,
by noting that Y = BS

0

, (18) can be simpli�ed into (19).
⇤

R����� 2. When Ŷ
0

Ŷ is not invertible, P̂ERM in (19) is not unique.
This can notably happen with coherent base forecasts or in high-
dimensional setting.

If the base forecasts are coherent, we can write Ŷ = DS
0

. In that
case, the columns of Ŷ are linearly dependent. Consequently, we will
have

rank(Ŷ
0

Ŷ ) = rank(Ŷ ) = rank(SD
0

)  min(rank(S), rank(D))  m.

Therefore, Ŷ
0

Ŷ 2 Rn⇥n is not invertible. In other words, incoherent
base forecasts is a necessary condition for Ŷ

0

Ŷ to be invertible.
Obtaining coherent base forecasts is unlikely to happen in practice

due to estimation errors in Ŷ . However, asymptotically, i.e. when
T1 ! 1, and if the model is well-speci�ed, the base forecasts Ä̂t (h)
will converge to the conditional mean given in expression (2). In that
case, the rows of matrix D will contain E[bt+h |It ] at times t =
T1 + h, . . . ,T � h. This implies that the model is unidenti�ed in the
limit when the forecasts are coherent eventually as the number of
observations T1 tends to in�nity.

Nevertheless, we can compute a unique solution using the Moore-
Penrose generalized inverse. If Ŷ = UŶ �Ŷ V

0

Ŷ
is the thin SVD of Ŷ ,

i.e. without the zeroes in �Ŷ , then this is equivalent to computing

P̂ERM = VŶ ��1
Ŷ
U

0

Ŷ
B. (25)

Note that the same observation applies to the MinT solution in (9).
In fact, if the model is well-speci�ed,Wc is asymptotically singular
sinceWc = SVbS

0

where Vb is the covariance of the random error
terms in the bottom level.

3.2 Regularization for high-dimensional
hierarchies

The ERM method has the advantage of relaxing the unbiasedness
assumptions of MinT. The associated optimization problem in (15)
involves the estimation ofm ⇥n =m2 +mk parameters wherem is
the number of bottom-level series. However, common hierarchies
can have a large number of bottom-level seriesm compared to the
number of historical observations. The larger number of parameters
to estimate results in an increase in estimation variance due to the
accumulation of estimation errors. This is in turn transmitted into
higher forecast variance, leading to poor forecast accuracy.

To overcome this issue, we propose to apply regularization to
our objective in (17). More precisely, we propose a new method,
called ERMreg, which solves the following problem:

P̂ERMreg = argmin
P 2P

⇢���Y � Ŷ P
0

S
0
���2
F
/Nn + � kvec(P)k1

�
, (26)

where � � 0 is a hyperparameter which controls the amount of
regularization to apply. When � = 0, the problem reduces to (15)
with a closed-form solution given by (19).

The major bene�t of imposing a complexity penalty lies in the
reduction in estimation variance by sacri�cing some bias. In fact,
parsimonious models often provide better forecasts than complex
true models. Imposing an L1 penalty is motivated by the fact that,

asymptotically, the optimal forecasts are given by P = PBU =⇥
0m⇥k | Im

⇤
, which is sparse.

By replacing the �rst term in (26) with (21), the previous prob-
lem can be reduced to a standard LASSO problem with vec(Y ) as
dependent variable and (S ⌦ Ŷ ) as design matrix. In other words,
we need to solve a LASSO problem with N ⇥ n observations and
m2 +mk variables.

We can use various e�cient LASSO solvers for high-dimensional
problems, for example cyclical coordinate descent methods (see
Section 5.4 in [7] and [5]) and since (S ⌦ Ŷ ) is a sparse matrix, ex-
ploiting sparse matrix algebra can further reduce the computational
load.

Adding an L1 penalty term to the objective function will en-
courage sparsity in P . This is notably motivated by the fact that
the optimal forecasts have a sparse P matrix. However, this will
also have the e�ect of shrinking the revised forecasts towards zero,
which is not desirable when dealing with strictly positive observa-
tions.

In traditional forecast combination, the combination weights
are often penalized towards the average combination, i.e. the same
weight is given to all forecasts [16]. In the context of hierarchical
forecasting, average combination is not possible since the forecasts
are associated to di�erent variables and their aggregates.

We propose to penalize thematrixP towards thePBU =
⇥
0m⇥k | Im

⇤
,

i.e. no combination is applied.
In other words, we propose to solve the following problem:

P̂ERMregbu = argmin
P 2P

⇢���Y � Ŷ P
0

S
0
���2
F
/Nn + � kvec(P � PBU)k1

�
.

(27)
Note that we do not use PBU as weight matrix, but we rather pe-

nalize our weights towards PBU where the amount of regularization
is controlled by �.

Using PBU as reference matrix is motivated by the fact that,
asymptotically, the optimal forecasts given in (2) can be computed
as revised forecasts with P = PBU. Furthermore, the matrix PBU
has the advantage of parsimony. If Ä̂T (h) = µT (h), any matrix P
that satisfy PS = I will produce bottom-up revised forecasts. But,
PBU is the sparsest (in L0 “norm”) matrix P for which PS = I , as
summarized in the following theorem.

T������ 3. PBU =
⇥
0m⇥k | Im

⇤
is the unique solution of the

following optimization problem:

min
P 2P

m’
i=1

n’
j=1

|Pi j |
0 subject to PS = I . (28)

The proof is given in the Appendix B.1.
Using the reparametrization C = P � PBU, Problem (27) can

be rewritten in the same form as (26). Furthermore, Problem (27)
can be written as a standard LASSO problem as stated by the next
Proposition.

P���������� 4. Let � = vec(P
0

� P
0

BU). Problem (27) can be for-
mulated as

min
� 2Rp

�
kz �X� k22

�
Nm + � k� k1 , (29)

where X = (S ⌦ Ŷ ) and z = vec(Y ) �X vec(P
0

BU).
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P����. The result follows from plugging � = P
0

� P
0

BU in (27)
and applying vectorization as in (21). ⇤

R����� 5. As stated by Proposition 4, Problem (27) can be re-
duced to a standard LASSO problem and therefore, one can use readily
available standard algorithms embedded in statistical software. Fur-
thermore, thanks to the L1 regularization, a unique solution to (29)
may exist even though (X

0

X ) is singular, where X is de�ned in (29).
However, standard inference tools based on well-established sta-

tistical properties of LASSO estimation are not directly applicable
since it is subject to the issue of nearly singular design introduced in
[12]. Using the method developed in [12], for the purpose of statistical
inference, the following theorem provides the limiting distribution of
appropriately standardized estimator of � in (29) even in the nearly
singular design.

T������ 6. Under the assumptions D1-D2 in Appendix A.2,

rq (�̂ � �)
d
! argminQ0(Ç)

with

Q0(Ç) = �2Ç
0

V + Ç
0

DÇ + �0

m⇥n’
j=1

{�j sgn(�j ) + |�j |I (�j = 0)},

where M = plimq!11/q
Õq
t=1 xtx

0

t , q = Nm, V is de�ned as a
zero-mean multivariate normal random vector such that Var(Ç0V ) =

� 2Ç
0

DÇ for Ç satisfyingMÇ = 0 and sgn(·) denotes the sign function.

The proof is given in Appendix B.2.

4 COMPARISONWITH MINT
In this section, we give more details about the di�erences between
the MinT method and our new forecasting methods presented in
Sections 2.2 and 3, respectively.

4.1 Unbiasedness assumptions
Under some regularity conditions (see Appendix A), the objective
function in (16) is the sample version of the following population
objective

L(P) = E
⇥
kÄT+h � Ä̃T (h)k

2
2
⇤

(30)

= E
⇥
E

⇥
kÄT+h � Ä̃T (h)k

2
2 |IT

⇤ ⇤
. (31)

Let us compare our population objective in (31) with the MinT
population objective function in (7). First, we can see that we have
relaxed the unbiasedness assumptions of MinT. Secondly, our ob-
jective involves averaged forecast errors while MinT deals with
path-dependent forecast errors.

Although path-dependent forecast errors are more general than
averaged forecast errors [14], it is hard to compute a reliable esti-
mate of the path-dependent forecast errors. This is due to fact that
we only observe one realization of the underlying data generating
process (see Section 7.12 in [8] for a related discussion).

Furthermore, the MinT solution depends on the conditional co-
variance matrixWc de�ned in (9). However, by the law of large
numbers, Ŵ in (11) asymptotically converges to the unconditional
covariance matrixWu = E

h
êT (h)ê

0

T (h)
i
. In other words, MinT

asymptotically minimize (31) under the constraints A1 and C1.
This is summarized in the following lemma.

L���� 7. Suppose that the conditions A1 and C1 hold. Then, the
weight matrix that minimizes the criterion (31) is given by

PU =
⇣
S
0

W �1
u S

⌘�1
S
0

W �1
u , (32)

whereWu = E
h
êT (h)ê

0

T (h)
i
andW �1

u is the Moore-Penrose general-
ized inverse ofWu .

P����. Using expression (14) and Lemma 1 in [17], we can write

E
⇥
E

⇥
kÄT+h � Ä̃T (h)k

2
2 |IT

⇤ ⇤
(33)

= E [Tr(Var[ÄT+h � Ä̃T (h)|IT ])] (34)
= Tr [E((Var[ÄT+h � Ä̃T (h)|It ]))] (35)

= Tr
h
SPWuP

0

S
0
i
, (36)

whereWu = E
h
êT (h)ê

0

T (h)
i
with êT (h) = ÄT+h � Ä̂T (h), i.e.Wu is

the variance covariance matrix of the unconditional h-step-ahead
base forecast errors. Then, the solution that minimizes (36) is given
by

PU =
⇣
S
0

W �1
u S

⌘�1
S
0

W �1
u , (37)

due to the Moore-Penrose generalized inverse. ⇤

A direct consequence of Lemma (7) is that, under the conditions
A1 andC1, P̂MinT in (10) and P̂ERM in (15) are asymptotically equiv-
alent to PU in (32). This is summarized in the following Corollary.

C�������� 8. Suppose that the regularity conditions B1-B3 in
Appendix A hold. Then, under the assumptions A1 and C1, P̂MinT in
(10) and P̂ERM in (15) are asymptotically equivalent to PU in (32).

The proof is given in the Appendix B.3.
In summary, asymptotically, our ERM method includes MinT as

a particular case, and reduces to MinT under the conditions A1 and
C1.

4.2 Regularization
Let b̃T (h) = P⇤Ä̂T (h) be the bottom-level infeasible MinT forecasts
where P⇤ is de�ned in (9). Using the proof of Theorem 1 in [17], we
can show that b̃T (h) = �̂ where �̂ is the solution of the following
generalized least squares problem:

min
� 2Rm

(Ä̂T (h) � S�)0W �1
(Ä̂T (h) � S�). (38)

Although, the previous optimization problem does not include any
explicit regularization term, the speci�c structure of the matrix S
has an implicit regularization e�ect. For simplicity of exposition, let
us assume thatW is a block diagonal matrix, i.e.W = diag(WaWb ).
Then, since S 0 =

⇥
A0 Im

⇤ 0 and (âT (h) b̂T (h))0 , we can rewrite prob-
lem (38) as

min
� 2Rm

(âT (h) �A�)0W �1
a (âT (h) �A�) (39)

+(� � b̂T (h))
0W �1

b (� � b̂T (h)). (40)

The previous optimization problem reveals that the objective
function of MinT is similar to a generalized ridge regression prob-
lem, where the �rst term is a generalized weighted least squares
criterion, and the second term is the generalized ridge penalty. A
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closer look at (40) shows that MinT seeks to �nd the bottom-level
forecasts � for which the associated bottom-up forecasts A� are
closest to the base forecasts at the aggregate levels where the im-
portance of each di�erence is controlled byW �1

a . Furthermore, the
bottom-level forecasts � are shrunk towards the bottom-level base
forecasts where the shrinkage amount is controlled byW �1

b .
For MinT in high-dimensional setting, a shrinkage estimator

becomes inevitable due to the accumulation of estimation errors.
We can see this by noting that

���Tr(SPŴ P
0

S
0

) � Tr(SPWcP
0

S
0

)

��� ���Ŵ �Wc

���
1

���P 0

S
0
���2
1
. Related discussion can be found in [2] and [3]

among many others.
Let us considerŴ as de�ned in (11) withŴs = diag(Ŵs,a Ŵs,b )

and Ŵd = diag(Ŵd,a Ŵd,b ). Let us plug Ŵ in (40), i.e.Wa = (1 �
�)Ŵs,a + �Ŵd,a andWb = (1 � �)Ŵs,b + �Ŵd,b. Then, we can
see that the value of � will notably a�ect the amount of shrinkage
towards the bottom-level base forecasts. In particular, when � = 1,
which has been considered in [11], the penalty term reduces toÕm
j=1

1
ŵ j

(�j � b̂j,T (h))
2 where ŵ j is the jth diagonal element of the

matrix Ŵd,b . Assuming the series are in the same scale, this shows
that more shrinkage is applied when the base forecasts b̂j,T (h) are
more accurate.

Although MinT implicitly regularizes the revised forecasts, the
solution is still based on the assumption A1 and constraint C1. In
other words, if A1 and C1 are not appropriate for the problem at
hand, shrinking the revised forecasts towards the base forecasts can
lead to poor forecast accuracy. Our method ERMreg is more robust
since we try to �nd the best tradeo� between bias and estimation
variance by explicitly adding a regularization term.

5 EXPERIMENTS
We perform multiple experiments to compare our forecasting meth-
ods with the state-of-the art methods in di�erent conditions. We
consider both simulated and real-world datasets. For each dataset,
we sample 100 di�erent hierarchies, and the results are averaged
over these 100 hierarchies.

5.1 Data
In the following, we describe the di�erent data sets used in the
experiments.

5.1.1 Simulated data (see Figure 3a). We use the data generating
mechanism developed in [17] (see Sections 3.3 and 3.5) to re�ect
common characteristics of hierarchical time series such as corre-
lations across series, and smoother data with more aggregation.
The bottom-level series are sampled from correlated ARMA pro-
cesses where the coe�cients are sampled uniformly from a speci�c
parameter space that guarantees stationarity. The random error
terms have a multivariate Gaussian distribution with a covariance
structure that induces a strongly positive correlation among series
with the same parents, but a moderately positive correlation among
series with di�erent parents. For each series, we generate 600 obser-
vations split in training and validation sets, 2/3 and 1/3 respectively.
An additional sample of 200 observations is used for testing. We
consider both a small and a large two-level hierarchy wherem = 4
and k = 3, andm = 100 and k = 26, respectively. More speci�cally,

the bottom level series were aggregated in groups of two for the
next level in the small hierarchy, and groups of four in the large
hierarchy. These series were then aggregated to obtain the top level
series.

5.1.2 Road tra�ic 1 (see Figure 3b). The dataset gives the occupancy
rate (between 0 and 1) of 963 car lanes of San Francisco bay area
freeways. The measurements are sampled every 10 minutes from
Jan. 1st 2008 to Mar. 30th 2009. This dataset has been notably used
in [4] for classi�cation tasks. We aggregate the data to 366 daily
observations split in 120, 120 and 126 observations for training,
validation and testing, respectively. We consider hierarchies with
m = 200 and k = 7, where each hierarchy is constructed as follows.
We sample 200 bottom level series from the 963 series, and compute
the upper level series by aggregation. More speci�cally, 200 series
at the bottom level were aggregated in groups of 50 for the next
level, resulting in 4 series. These 4 series were then aggregated
in groups of two to obtain two aggregate series and the top level
series.

5.1.3 Wikipedia webpage views 2 (see Figure 3c). The dataset gives
the number of daily views of 145,000 di�erent Wikipedia articles
starting from July, 1st, 2015 up until December 31st, 2016. We use
the 366 observations for 2016 split in 86, 160 and 120 observations
for training, validation and testing, respectively. We consider hi-
erarchies where m = 150 and k = 49, where each hierarchy is
constructed as follows. We sample 150 bottom level series from
the 145k series, and compute the upper level series by aggregation.
More speci�cally, the bottom level series are hierarchically aggre-
gated into type of agent (“all-agents” and “spider”), type of access
(“all-access”, “desktop” and “mobile-web”) and country codes (“en”,
“fr”, “de”, “ja”, “ru”, “zh”). The hierarchy’s architecture is summa-
rized in Figure 2, where the top level series is in the center and the
most disaggregated bottom level series are on the circumference of
the circle.
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Figure 2: The hierarchical structure of the Wikipedia data.

1https://archive.ics.uci.edu/ml/datasets/PEMS-SF
2https://www.kaggle.com/c/web-tra�c-time-series-forecasting/data
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Figure 3: Visualization of the various time series considered in the experiments.

5.2 Methodology
In order to ensure stationarity, we remove the trend and seasonal
component using the Seasonal and Trend decomposition using
Loess (STL). We also apply a log transformation to stabilize the
variance. Finally, we replace any outliers using linear interpolation,
as implemented in the tsclean function in the forecast package for
R.

For each series in each hierarchy, we produce one-step-ahead
rolling-origin base forecasts for both the validation and test sets
from amodel �tted to the lastT1 observations.We useT1 = 400, 86, 120
for the simulated, road tra�c and Wikipedia data sets, respectively.
We consider both ARIMA and Exponential Smoothing (ETS) fore-
casting algorithms �tted using the automatic model selection al-
gorithm of [9], which is implemented in the forecast package for
R. While the simulated data are generated using an ARMA pro-
cess, using an ETS model allows us to simulate what happens in
practice, where the true data generating processes is unknown and
misspeci�ed.

We consider the following hierarchical forecasting methods:

BASE. The base forecasts de�ned in (4) produced as described
in the previous paragraph. Recall that the base forecasts are
(probably) incoherent.

BU. The bottom-up forecasts de�ned in (3), i.e. where (5) is
computed using (6).

MinTsam. The MinT forecasts given in (10) where (11) is com-
puted with � = 1.

MinTols. The MinT forecasts given in (10) where (11) is com-
puted with Ŵd = �̂ 2In and � = 0.

MinTshr. The MinT forecasts given in (10) where (11) is with
an optimal shrinkage factor � , as described in [15].

ERM. The ERM forecasts where (5) is computed using (25).
ERMreg. The ERMreg forecasts where (5) is computed using

(26). We use cross-validation to select the best value of �, as
implemented in the glmnet package in R.

ERMregbu. The ERMreg forecasts where (5) is computed us-
ing (27).

6 RESULTS
For each data set, we compute the one-step-ahead mean squared
forecast errors for all series in the hierarchy, i.e.

1
Ttest

T+Ttest�1’
t=T

kÄt+1 � SPÄ̂t (1)k22 ,

and the bottom series only, i.e.

1
Ttest

T+Ttest’
t=T

kbt+1 � PÄ̂t (1)k22 .

where Ttest is the number of observations in the test set. We have
Ttest = 200, 120, 120 for the simulated, road tra�c and Wikipedia
data, respectively. We then average the results for the 100 hierar-
chies.

We start by analyzing the results for the simulated data. Table
1 and 2 give the forecasting errors for the small and the large
hierarchy, respectively.

ARIMA ETS
All Bottom All Bottom

BASE 39.32 (0.33) 8.20 (0.05) 43.64 (0.42) 9.09 (0.07)
BU 39.11 (0.32) 8.20 (0.05) 43.59 (0.42) 9.09 (0.07)

ERM 40.23 (0.41) 8.43 (0.07) 41.26 (0.43) 8.59 (0.07)
ERMreg 39.45 (0.33) 8.29 (0.05) 40.83 (0.40) 8.53 (0.07)
ERMregbu 39.29 (0.33) 8.24 (0.05) 40.76 (0.40) 8.51 (0.07)

MINTsam 40.97 (0.48) 8.55 (0.08) 44.90 (0.71) 9.38 (0.14)
MINTols 39.14 (0.33) 8.20 (0.05) 43.63 (0.42) 9.10 (0.07)
MINTshr 39.15 (0.32) 8.20 (0.05) 43.61 (0.42) 9.09 (0.07)

Table 1: Forecast errors for the simulated data with a small
hierarchy. Standard errors are given in parentheses.

Table 1 and 2 show that when using an ETS model, i.e when the
base model is misspeci�ed, our ERMreg methods outperform all
the other methods. This con�rms the robustness of our methods
to misspeci�cation of the base forecasts. When an ARMA model is
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ARIMA ETS
All Bottom All Bottom

BASE 11.03 (0.05) 2.05 (0.00) 12.21 (0.06) 2.28 (0.00)
BU 10.87 (0.05) 2.05 (0.00) 12.16 (0.06) 2.28 (0.00)

ERM 18.41 (0.13) 3.53 (0.02) 22.01 (0.19) 4.18 (0.02)
ERMreg 11.69 (0.05) 2.28 (0.00) 12.37 (0.06) 2.37 (0.00)
ERMregbu 10.88 (0.05) 2.06 (0.00) 11.69 (0.05) 2.22 (0.00)

MINTsam 12.13 (0.10) 2.30 (0.01) 13.04 (0.07) 2.44 (0.01)
MINTols 11.00 (0.05) 2.06 (0.00) 12.21 (0.06) 2.28 (0.00)
MINTshr 10.85 (0.05) 2.05 (0.00) 12.16 (0.06) 2.28 (0.00)

Table 2: Forecast errors (⇥102) for the simulated data with a
large hierarchy. Standard errors are given in parentheses.

used, i.e. the base model is well-speci�ed, our methods still provide
good forecasts although this is the ideal scenario for MINT.

In Table 2, for the large hierarchy, we can see that MINTsam
and ERM have larger forecast errors than the other methods. This
is not surprising since both MINTsam and ERM do not use regu-
larization, and as a result su�er from the accumulation of errors
in high dimensions. In fact, the larger number of parameters to
estimate signi�cantly increases the forecast variance which leads
to poor forecast accuracy. We can also see that ERM is more af-
fected by high dimensionality than MINTsam. With MINTsam, the
accumulation of errors will indirectly a�ect the estimation of the
combination weights. In fact, in order to compute the combination
weights, MINTsam plugs Ŵs given in (11) into (10). However, since
ERM solves the high-dimensional regression problem given in (15),
it will be directly a�ected by the accumulation of errors. Neverthe-
less, we can see that MINTshr and ERMreg signi�cantly reduce the
forecast errors thanks to regularization which reduces forecast vari-
ance. The robustness of our ERMreg methods to misspeci�cation
can also be seen in Table 2.

Table 3 and 4 give the results for the road tra�c and Wikipedia
data, respectively. For clarity, given that MINTsam and ERM pro-
vide very poor forecasts (due to high-dimensionality, as discussed
above), we omit their results from the tables. For both data sets, our
method ERMregbu provides competitive results compared to the
other methods.

Figure 4 plots the weight matrix of di�erent methods computed
for one hierarchy of the road tra�c data set. Each entry of thematrix
gives |Pi j |, i.e. the absolute value of the ith row and the jth column
of matrix P . A white cell has zero value, and a darker cell has a
higher value. In addition to di�erences in forecast accuracy, Figure
4 shows that the di�erent methods provide combination weights
with di�erent structures. In fact, we can see that MINTshr and ERM
have a dense weight matrix while ERMreg and ERMregbu provide
sparse matrices, as excepted. The diagonal line for some matrices
shows that the base forecast for the series under consideration has
been selected in the forecast combination.

ARIMA ETS
All Bottom All Bottom

BASE 34.47 (0.35) 1.72 (0.01) 36.97 (0.36) 1.82 (0.01)
BU 32.85 (0.31) 1.72 (0.01) 32.95 (0.31) 1.82 (0.01)

ERMreg 31.37 (0.53) 1.78 (0.01) 36.78 (0.78) 1.81 (0.02)
ERMregbu 31.24 (0.32) 1.72 (0.01) 36.68 (0.61) 1.88 (0.01)

MINTols 34.18 (0.34) 1.73 (0.01) 36.66 (0.36) 1.84 (0.01)
MINTshr 32.67 (0.31) 1.72 (0.01) 33.10 (0.31) 1.81 (0.01)

Table 3: Forecast errors for the road tra�c data. Standard
errors are given in parentheses.

ARIMA ETS
All Bottom All Bottom

BASE 70.98 (0.68) 10.94 (0.09) 74.01 (0.71) 11.10 (0.10)
BU 69.71 (0.65) 10.94 (0.09) 72.43 (0.63) 11.10 (0.10)

ERMreg 72.22 (0.69) 11.19 (0.10) 73.87 (0.73) 11.21 (0.10)
ERMregbu 69.61 (0.64) 11.01 (0.09) 72.95 (0.65) 11.13 (0.10)

MINTols 70.29 (0.67) 10.96 (0.09) 73.69 (0.70) 11.11 (0.10)
MINTshr 69.31 (0.66) 10.93 (0.09) 72.78 (0.65) 11.10 (0.10)

Table 4: Forecast errors for the Wikipedia data. Standard er-
rors are given in parentheses.

7 CONCLUSION
We considered the problem of forecasting multiple time series under
hierarchical constraints. We proposed a new forecasting method
which does not assume or constrain the forecasts to be unbiased
but aim to �nd the best tradeo� between bias and forecast variance.
Our method involves solving a multi-response regression problem
for which we provided a closed-form solution. To deal with high-
dimensional hierarchies, we also proposed a regularization method
that has a theoretical justi�cation, and proved its asymptotic proper-
ties. We also showed that our problems can be divided into multiple
independent problems which can be solved e�ciently in parallel.
We compared our methods both theoretically and empirically with
the state-of-the-art methods for hierarchical forecasting. Using
both simulated and two real-world time series data, we showed
our methods is competitive with the state-of-the-art methods in
various conditions.

One direction for future work is the improvement of the compu-
tational complexity of our methods, as well as the development of
new regularization methods which exploit the hierarchical struc-
ture of the data. Another important problem is the computation of
probabilistic forecasts for high-dimensional hierarchies [1]. Finally,
it is also possible to extend and adapt our methods to the problem
of multi-source learning/forecasting with hierarchical structures
[18–20].
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Figure 4: Matrix combination weights for di�erent hierarchical forecasting methods.
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A REGULARITY CONDITIONS
A.1 De�nitions
In what follows, Op (·) and op (·) denote the usual big O and little

o in probability.
p
! and

d
! denote convergence in probability and

convergence in distribution respectively.

D��������� 9. UT (s)
e�d
! U (s) if for any closed rectanglesR1, ...,Rk

with open interiors R01, ...,R
0
k and any real numbers a1, ...,ak ,

P{ inf
s 2R1

U (s) > a1, ..., inf
s 2Rk

U (s) > ak }

 lim inf
T!1

P{ inf
s 2R1

U (s) > a1, ..., inf
s 2Rk

U (s) > ak }

 lim sup
T!1

P{ inf
s 2R0

1

U (s) > a1, ..., inf
s 2R0

k

U (s) > ak }

P{ inf
s 2R0

1

U (s) > a1, ..., inf
s 2R0

k

U (s) > ak }

A.2 Regularity conditions for Theorem 6
D1 (near singularity)
(i) Let Mq = 1/q

ÕT
t=1 xtx

0

t . Mq is nonsingular for all q
whereas its probability limit,M is singular.

(ii) As q ! 1, xt satis�es

1
q

max
1t q

xtM
�1
q xt ! 0.

(iii) For some sequence of constants, {cq } tending to in�nity,

cq (Mq �M)
p
! D

where D is a positive de�nite matrix on the null space of
M .

D2 (Shrinkage parameter and the rate of convergence) Let
the shrinkage parameter � be such that �

�
rq ! �0 where

�0 is a positive constant and rq =
p
q/cq .

A.3 Regularity conditions for Corollary 8
To ensure that the sample objective function (15) converges to
the limit objective function (31) and the minimizer of the former
matches with that of the latter, we assume the following.

B1 (Data) {Ät }Tt=1 is strictly stationary, ergodic with exponen-
tially decaying mixing coe�cients.

B2 (Parameter Space) The true parameter P0 involving the
Moore-Penrose generalized inverse belongs to the interior
of a compact convex subset P of the Euclidean space, Rm⇥n .

B3 (Objective function) The nonrandom limit objectiveL(P)
exists, is minimized uniquely at P0 involving the Moore-
Penrose generalized inverse and is equicontinuous on P ,
i.e. it is well behaved in the neighborhood around P0, i.e.
kP � P0k  � at some � . For any � > 0, there exists � > 0,

lim inf
T!1

P

 
sup

kP �P0 k��
(LT (P) � LT (P0)))  ��

!
= 1,

and for any � > 0, there exists � > 0, s.t.

inf
kP �P0 k>�

L(P) � L(P0) � � .

B PROOFS
B.1 Proof of Theorem 3
If condition. First, we show that PBU is at least one of solutions
of the objective function in (28). Note that PBUS = I and

m’
i=1

n’
j=1

|PBU[i j] |
0 =m.

Therefore, in order to show that PBU could be a solution, we
must show that

min(
m’
i=1

n’
j=1

|Pi j |
0
) =m

for any P such that PS = I .
Note that for P such that PS = I , rank(PS) = rank(I ) = m 

min(rank(P), rank(S)), and rank(S) = m. So, rank(P) � m. Since
rank(I ) =m, rank(P) � m. This implies that the L0 norm of P must
be greater or equal tom. This is because the rank of P could not be
greater than or equal tom if the number of non-zero values of P
is lower thanm. As a result, PBU is at least one of solutions of the
above objective function.

Only if condition. Now, we turn our attention to showing that
PBU is the unique solution for (28). Suppose that PBU is only one of
many solutions for the above objective function. Then, there exists
P⇤ such that P⇤ = PBU +C with a non-zerom ⇥ n sized matrix,C
and P⇤S = I . Since min(

Õm
i=1

Õn
j=1 |P

⇤
i j |

0
) =m, there are two cases

we need to consider.
The �rst case is when one of the non-zero values of P⇤ is di�er-

ent from the non-zero values of PBU in the same location. This is
contradictory since there is no such solution because in that case
P⇤S , I , i.e. it should be PBU = P⇤.

The second case is when one of the non-zero values of PBU
becomes zero and one of zero values of PBU becomes non-zero.
This should be satis�ed to ensure that min(

Õm
i=1

Õn
j=1 |P

⇤
i j |

0
) =m.

Note that

PBUS +CS = I =) CS = 0 =)
CaA +Cb = 0 =) Cb = �CaA

Then, one of the diagonal values of Cb should be �1 and all the
others are zeros while one of the values ofCa should be non-zero
and others are zeros.

Note that Cb,ii = �
Õn
j=Ca,i jAji for j = 1, ...,n. Suppose that

i = k for some �xed k . Then, Cb,kk = �1 and only one non-zero
value belongs toCa,k j and it should be 1. However, if any of Ajk
contains at least one non-zero value except for j = k , then the equal-
ity will not hold. But this is the case because A is the aggregation
matrix. This is contradictory sinceCb = �CaA. Therefore,C = 0.
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B.2 Proof of Theorem 6
Recall that for Ät = (at bt )0, Ät = Sbt where S =

⇥
A

0

Im
⇤ 0
. That

is, at can be expressed as linear combinations of bt . This implies
that our regression problem is subject to the issue of nearly singular
design. As seen from Remark 2, this is the natural consequence
of hierarchical time series forecasting given that Y 0Y is singular
whereas Ŷ

0

Ŷ can be nonsingular due to estimation error.
Recall that

Qq (�) = kz �X� k22
�
q + �k� k1, (41)

where X = (S ⌦ Ŷ ), z = vec(Y ) � X vec(P
0

BU), � = vec(P
0

� P
0

BU),
N = T �T1 � h + 1, and q = Nm.

It is worth noting that Qq (·) is convex by construction. Here
we borrow the concept of near collinearity or near singularity
introduced in [12], i.e. for a regressor matrix X ,Mq is nonsingular
but its limit,M is singular where

Mq =
1
q

T’
t=1

xtx
0

t

M =plimq!1Mq

De�ne Ç = rq (� ��0). Note that via reparameterization, (41) can
be rewritten as

Qq (Ç) = (k� �XÇ
�
rq k

2
2 � k� k22 )

�
q + �(k� +Ç

�
rq k1 � k� k1) (42)

where � = vec(z �X�) and � and rq satis�es the assumption D2.
Note that if �̂ minimizesQq (�), Ç̂ :⌘ rq (�̂ � �) minimizesQq (Ç).

LetQ0(Ç) = limq!1Qq (Ç). Due to convexity ofQq (·),Q0(·) and
Qq (·) is stochastically equi-lower semicontinuous, which implies

thatQq (Ç)
e�d
! Q0(Ç) (see [12]). Trivially, rq (�̂ � �0) = Op (1) due

to the convexity ofQq (Ç) and the usual asymptotic theory related
to the LASSO estimation.

Combined with Ç̂ = Op (1), the epi-convergence Qq (Ç)
e�d
!

Q0(Ç), implies that the limiting distribution of Ç̂ is equivalent to
that of the minimizer of the limit objective function of the sample

objective function, i.e. Ç̂
d
! argminQ0(Ç).

The remainder is to obtain the �nite-dimensional limit ofQq (Ç).
Note that

(k� �XÇ
�
cq k

2
2 � k� k22 )

�
q

d
! �2Ç

0

V + Ç
0

DÇ

�(k� + Ç
�
rq k1 � k� k1)

d
! �0

m⇥n’
j=1

{�j sgn(�j ) + |�j |I (�j = 0)}

where V is de�ned as a zero-mean multivariate normal random
vector such that Var(Ç0V ) = � 2Ç

0

DÇ for Ç satisfyingMÇ = 0. This
completes the proof.

B.3 Proof of Corollary 8
We show that P̂ERM computed by solving (15) and P̂MinT are asymp-
totically equivalent to PU where PU is de�ned in (37).

Consider Ŵ de�ned in (11), and assume � ! 0 when T ! 1.
Then, by the usual laws of large numbers for the stationary and
ergodic data, Ŵ

p
!Wu . Furthermore, using Slutsky theorem, we

have
P̂MinT

p
! PU .

In order to show that P̂ERM
p
! PU , we note that

sup
P 2P

|LT (P ,Ä) � L(P)|  sup
P 2P

|LT (P ,Ä) � ELT (P ,Ä)|

+ sup
P 2P

|ELT (P ,Ä) � L(P)|

By construction, LT (P ,Ä) is continuous in P 2 P for all Ä and is
a measurable function of Ä for all P 2 P. Due to the assumptions
B1-B3, LT (P ,Ä) is stochastic equicontinuous such that

sup
P 2P

sup
P ⇤ 2B(P ,� )

|LT (P ,Ä) � LT (P
⇤,Ä)| = op (1)

where B(P , �) is a closed ball in P of radius � � 0 centered at P .
Due to the pointwise convergence of LT (P ,Ä) to L(P) on P and
uniform stochastic equicontinuity of LT (P ,Ä),

sup
P 2P

|LT (P ,Ä) � L(P)| = op (1).

Since we de�ne P0 as the true parameter involving the Moore-
Penrose generalized inverse in B2, PU is the unique one for P0 in a
sense that PU minimizes L(P) uniquely in the mean squared error
sense. Note also that P̂ERM is the unique minimizer of LT (P ,Ä)
involving the Moore-Penrose generalized inverse and shares the
same criterion as PU . Therefore, due to the assumption B3 and the
argmax theorem, P̂ERM

p
! PU .
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