
Machine learning strategies for

multi-step-ahead

time series forecasting

A thesis submitted for the degree of

Doctor of Philosophy

by

Souhaib Ben Taieb

Département d’Informatique
Université Libre de Bruxelles

Belgium

September 2014

Declaration

This thesis has been written under the supervision of Prof. Gianluca Bontempi (Université Libre de
Bruxelles, Belgium) and Prof. Rob J. Hyndman (Monash University, Australia). The members of
the Jury are:

• Prof. Gianluca Bontempi (Université Libre de Bruxelles, Belgium)

• Prof. Yves Desmet (Université Libre de Bruxelles, Belgium)

• Prof. Rob J. Hyndman (Monash University, Australia)

• Prof. Maarten Jansen (Université Libre de Bruxelles, Belgium)

• Prof. Tom Lenaerts (Université Libre de Bruxelles, Belgium)

• Prof. Timo Teräsvirta (Aarhus University, Denmark)

• Prof. Michel Verleysen (Université Catholique de Louvain, Belgium)

I hereby declare that this thesis contains no material which has been accepted for the award of any
other degree or diploma in any university or equivalent institution, and that, to the best of my
knowledge and belief, this thesis contains no material previously published or written by another
person, except where due reference is made in the text of the thesis.

Souhaib Ben Taieb

ii

To my son Harone and my future children

It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to
suit theories, instead of theories to suit facts. —Arthur Conan Doyle, Sherlock Holmes.

The scientist does not study nature because it is useful; he studies it because he delights in it,
and he delights in it because it is beautiful. —Henri Poincaré.

I was like a boy playing on the sea-shore, and diverting myself now and then finding a
smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me. —Isaac Newton.

I see a pattern, but my imagination cannot picture the maker of that pattern. I see a clock,
but I cannot envision the clockmaker. The human mind is unable to conceive of the four
dimensions, so how can it conceive of a God, before whom a thousand years and a thousand
dimensions are as one? —Albert Einstein.

Abstract

How much electricity is going to be consumed for the next 24 hours? What will be the temperature
for the next three days? What will be the number of sales of a certain product for the next few
months? Answering these questions often requires forecasting several future observations from a
given sequence of historical observations, called a time series.

Historically, time series forecasting has been mainly studied in econometrics and statistics. In the
last two decades, machine learning, a field that is concerned with the development of algorithms
that can automatically learn from data, has become one of the most active areas of predictive
modeling research. This success is largely due to the superior performance of machine learning
prediction algorithms in many different applications as diverse as natural language processing,
speech recognition and spam detection. However, there has been very little research at the
intersection of time series forecasting and machine learning.

The goal of this dissertation is to narrow this gap by addressing the problem of multi-step-ahead
time series forecasting from the perspective of machine learning. To that end, we propose a series
of forecasting strategies based on machine learning algorithms.

Multi-step-ahead forecasts can be produced recursively by iterating a one-step-ahead model, or
directly using a specific model for each horizon. As a first contribution, we conduct an in-depth
study to compare recursive and direct forecasts generated with different learning algorithms for
different data generating processes. More precisely, we decompose the multi-step mean squared
forecast errors into the bias and variance components, and analyze their behavior over the forecast
horizon for different time series lengths. The results and observations made in this study then
guide us for the development of new forecasting strategies.

In particular, we find that choosing between recursive and direct forecasts is not an easy task since
it involves a trade-off between bias and estimation variance that depends on many interacting
factors, including the learning model, the underlying data generating process, the time series
length and the forecast horizon. As a second contribution, we develop multi-stage forecasting
strategies that do not treat the recursive and direct strategies as competitors, but seek to combine
their best properties. More precisely, the multi-stage strategies generate recursive linear forecasts,
and then adjust these forecasts by modeling the multi-step forecast residuals with direct nonlinear
models at each horizon, called rectification models. We propose a first multi-stage strategy, that we
called the rectify strategy, which estimates the rectification models using the nearest neighbors
model. However, because recursive linear forecasts often need small adjustments with real-world
time series, we also consider a second multi-stage strategy, called the boost strategy, that estimates
the rectification models using gradient boosting algorithms that use so-called weak learners.

Generating multi-step forecasts using a different model at each horizon provides a large modeling
flexibility. However, selecting these models independently can lead to irregularities in the forecasts
that can contribute to increase the forecast variance. The problem is exacerbated with nonlinear
machine learning models estimated from short time series. To address this issue, and as a third

v

Machine learning strategies for multi-step-ahead
time series forecasting

contribution, we introduce and analyze multi-horizon forecasting strategies that exploit the infor-
mation contained in other horizons when learning the model for each horizon. In particular, to
select the lag order and the hyperparameters of each model, multi-horizon strategies minimize
forecast errors over multiple horizons rather than just the horizon of interest.

We compare all the proposed strategies with both the recursive and direct strategies. We first apply
a bias and variance study, then we evaluate the different strategies using real-world time series
from two past forecasting competitions. For the rectify strategy, in addition to avoiding the choice
between recursive and direct forecasts, the results demonstrate that it has better, or at least has
close performance to, the best of the recursive and direct forecasts in different settings. For the
multi-horizon strategies, the results emphasize the decrease in variance compared to single-horizon
strategies, especially with linear or weakly nonlinear data generating processes. Overall, we found
that the accuracy of multi-step-ahead forecasts based on machine learning algorithms can be
significantly improved if an appropriate forecasting strategy is used to select the model parameters
and to generate the forecasts.

Lastly, as a fourth contribution, we have participated in the Load Forecasting track of the Global
Energy Forecasting Competition 2012. The competition involved a hierarchical load forecasting
problem where we were required to backcast and forecast hourly loads for a US utility with twenty
geographical zones. Our team, TinTin, ranked fifth out of 105 participating teams, and we have
been awarded an IEEE Power & Energy Society award.

vi

Acknowledgement

Les cinq années de ma thèse de doctorat ont été les plus productives tant au niveau professionnel
qu’au niveau personnel, et ceci notamment grâce au soutien, à la patience et à la disponibilité d’un
grand nombre de personnes de mon entourage que je tiens à remercier.

Tout d’abord, ma famille, et tout particulièrement ma mère et mon père, à qui je dois tout (et
plus encore). Je tiens aussi à remercier mes frères et soeurs, qui chacun à leur manière m’ont aussi
beaucoup donné.

Durant ces cinq dernières années, j’ai dû souvent m’absenter pour participer à plusieurs conférences
à l’étranger. Je tiens particulièrement à remercier mon épouse pour son encouragement et sa
patience lors de tous ces déplacements.

Il y a presque deux ans, notre petit Harone s’est joint à nous, et il a très bien choisi sa date de
naissance, en la retardant d’une semaine, jusqu’au dernier jour de la compétition “GEFCOM2012" à
laquelle je participais. Merci Harone de m’avoir permis de terminer la compétition, mais aussi pour
toute la joie et la bonne humeur que tu m’as procurée ces deux dernières années, en particulier
durant les moments les plus difficiles de ma thèse de doctorat.

J’ai une pensée particulière à tous les membres de ma famille que j’ai eu très peu l’occasion de
rencontrer durant ces dernières années, et que j’aimerais aussi remercier pour leur encouragement.

Enfin, les moments de joie et de bonheur que j’ai passé avec mes amis m’ont souvent permis
d’oublier les périodes difficiles. Je pense particulièrement à notre groupe, incluant Tarik, Jamel,
Ayoube, Abdelrahman et Ibrahim ; mais aussi à Ahmed, Abdeslam, Gabriel et Hadrien. Le tour
du Mont Blanc effectué avec Gabriel et Hadrien, ainsi que le voyage à Marrakech avec mon frère
Ayoub et mon cousin Ahmed resteront des moments mémorables. Merci à tous !

After my family and friends, I would like to thank those who contributed more directly to my
thesis.

My foremost gratitude goes to Gianluca Bontempi for his great advice and support throughout
the entire PhD journey. I am particularly grateful to Gianluca for his willingness and patience to
give me complete freedom to choose my research topics. His insightful understanding of machine
learning has allowed me to progress a lot, and I thank him for all he taught me about that subject.

I am deeply grateful to Rob Hyndman who joined this thesis as co-supervisor, two years ago. Rob is
one of the best forecasters in the world, and I have been very fortunate to work with him. I would
like to express my deep gratitude to Rob for all the support and encouragement he provided to me,
especially, his patience in answering all my questions during very late or very early Skype talks1

that we had every week for the last two years. As a result, our participation to the GEFCOM2012
competition led to excellent results.

1Due to the time zone difference between Brussels and Melbourne.

vii

Machine learning strategies for multi-step-ahead
time series forecasting

I also thank Rob for the great time we had while traveling to Paris, Seoul and Rome, discussing
about research and life for many hours. I also deeply appreciate Rob visiting me two times in
Brussels even he was very tired of all his previous trips.

I would like also to thank Rob for welcoming me at Monash University in Melbourne for five
months where I had the opportunity to work closely with him and to meet great people, including
Georges, Farshid, Anastasios, Julia, Slava, Mehmet, Alexander, Behrooz, Gary, and many others. In
particular, playing soccer with the red and blue teams was a very enjoyable experience.

More than a co-supervisor, I consider Rob as a close friend who is not only a brilliant researcher,
but also a person with an extremely nice and sincere personality.

Research is a team effort and I was fortunate enough to work with many collaborators. In particular,
I would like to thank Amir Atiya from Cairo University who accepted at a very early stage of the
thesis to provide me guidance and support. I also thank Amir for taking the time to visit me in
Brussels, last year. Giorgio Corani invited me at IDSIA in Lugano for one week, which was a very
exciting experience and I am very grateful for that.

I thank all my colleagues of the Machine Learning Group and the Department of Computer Science
that contributed to create an enjoyable daily atmosphere. Many thanks to all of you: Angélique,
Ahmed, Alessia, Amine, Andrea, Benjamin, Bernard, Boris, Catharina, Claudio, Elisa, Emmanuel,
Gérald, Gianluca, Gilles, Gwënael, Ioannis, Jean, Jean-François, Jean-Sébastien, Joël, Liran, Luciano,
Martin, Maarten, Maryka, Matteo, Miguel, Nikita, Naim, Olivier, Pascaline, Patrick, Stephane, The
Anh Han, Thierry, Tom, Vandy, Véronique, Yann-Aël, Yves, ...

I would like to thank all the people that have taken the time to read this thesis and that gave
me feedback, including Gianluca, Rob, Catharina, Nikita, Liran and Slava. A special thanks has
to be addressed to Catharina who accepted many times to give me feedback on my papers and
applications. In particular, she accepted to read this thesis while she was on holidays. Thanks
Catharina! I am also very grateful to Prof. Raymond Devillers who has proofread the preliminary
version of this thesis in great details, even though he was on holidays.

Finally, my love for science and education was born in large part thanks to my excellent mathematics
teacher in secondary school, Didier Pauwels. I would like to thank Didier for his enthusiasm and
the time he takes to provide an excellent education for his students.

On this day, 19th of August 2014, my birthday, I am grateful for being able to do what I love to do.

Financial Support: the work presented in this thesis was supported by the Belgian National Funds
for Scientific Research (FNRS) through a Research Fellow grant.

viii

Contents

Declaration ii

Abstract v

Acknowledgement vii

1 Introduction 1

1.1 Time series forecasting and machine learning . 1
1.2 Motivations and aims . 2
1.3 Contributions . 4

1.3.1 Publications and conferences . 4
1.3.2 Research activities . 5
1.3.3 Software development . 5

I Overview 6

2 Background 7

2.1 Learning from data . 7
2.1.1 Different views and types of learning . 8
2.1.2 The regression learning problem . 8
2.1.3 The cure for overfitting . 12
2.1.4 The learning procedure . 15

2.2 Learning regression algorithms . 16
2.2.1 Linear model . 16

Penalized regression splines (P-Splines) . 19
2.2.2 Neural networks . 20
2.2.3 K-Nearest neighbors . 21
2.2.4 Gradient Boosting . 22

2.3 Time series forecasting . 24
2.3.1 Introduction . 24
2.3.2 Time series decomposition . 25
2.3.3 The statistical forecasting perspective . 26
2.3.4 Autoregressive models . 27
2.3.5 Autoregressive model selection . 29
2.3.6 Evaluating forecasts accuracy . 31

3 An overview of strategies for multi-step-ahead time series forecasting 32

3.1 Preamble . 32
3.2 Multi-step forecasting . 32
3.3 The recursive and direct forecasting strategies . 33

ix

Machine learning strategies for multi-step-ahead
time series forecasting

3.4 Recursive or direct forecasts? . 35
3.4.1 Linear models . 36
3.4.2 Nonlinear models . 37

3.5 Alternative forecasting strategies . 39
3.5.1 Improving recursive forecasts . 39
3.5.2 Improving direct forecasts . 40
3.5.3 Hybrid forecasts . 40

3.6 Time series forecasting with machine learning . 41
3.7 Summary and concluding remarks . 42

II Contributions 45

4 Bias and variance analysis for multi-step forecasting 46

4.1 Introduction . 46
4.2 Mean squared multi-step forecast error decomposition 47

4.2.1 Further decompositions . 49
4.3 Methodology . 50

4.3.1 Theoretical analysis for two-step ahead forecasts 50
4.3.2 Monte Carlo simulations for h-step ahead forecasts 52

Data generating processes . 52
Bias and variance estimation . 53
Model selection and estimation . 54

4.4 Analysis of the recursive and direct strategies . 56
4.4.1 Scenario A: Linear model and linear DGP . 60
4.4.2 Scenario B: Linear model and nonlinear DGP 62
4.4.3 Scenario C: Nonlinear model and linear DGP 63
4.4.4 Scenario D: Nonlinear model and nonlinear DGP 67
4.4.5 Summary . 71

4.5 Concluding remarks . 74

5 Multi-stage forecasting strategies 76

5.1 Introduction . 76
5.2 Multi-stage forecasting strategies . 77
5.3 Bias and variance analysis . 82

5.3.1 Scenario A: Linear model and linear DGP . 83
5.3.2 Scenario B: Linear model and nonlinear DGP 87
5.3.3 Scenario C: Nonlinear model and linear DGP 90
5.3.4 Scenario D: Nonlinear model and nonlinear DGP 91
5.3.5 Averaging strategies . 96
5.3.6 Summary . 100

5.4 Real-data experiments . 102
5.5 Concluding remarks . 106

6 Multi-horizon forecasting strategies 108

6.1 Introduction . 108
6.2 Related work . 109
6.3 The multi-horizon strategies . 111

6.3.1 Implementation . 115
6.4 Bias and variance analysis . 117
6.5 Real-data experiments . 122

x

Machine learning strategies for multi-step-ahead
time series forecasting

6.6 Concluding remarks . 129

7 The Global Energy Forecasting Competition 2012 131

7.1 Introduction . 131
7.2 The load forecasting track . 133
7.3 Methodology of the TinTin team . 134

7.3.1 Data analysis and preprocessing . 134
7.3.2 Forecasting methodology . 138
7.3.3 Model specification . 147

Calendar effects . 147
Temperature effects . 148
Lagged demand effects . 148

7.3.4 Model estimation . 148
7.3.5 Model analysis . 149

7.4 Concluding remarks . 151

8 Conclusions and directions for future works 157

8.1 Limitations and future work . 160

A Real-world experiments 177

A.1 Time series data . 177
A.1.1 The M3 competition data . 177
A.1.2 The NN5 competition data . 177

A.2 Methodology . 177

B Simulated time series 180

xi

Chapter 1

Introduction

1.1 Time series forecasting and machine learning

Forecasts guide decisions in many areas of scientific, industrial and economic activities such as
meteorology, telecommunication and finance. In many real-life scenarios, the forecaster encounters
a multi-step-ahead forecasting problem where forecasts are required for short, medium or long
horizons. In particular, multi-step-ahead forecasting of a univariate time series consists in predict-
ing several future observations of a given sequence of historical observations. This thesis aims to
address the problem of multi-step-ahead time series forecasting from the perspective of machine
learning, a field that is concerned with the development of algorithms that can automatically learn
from data (Abu-Mostafa, Magdon-Ismail, and Lin, 2012; Hastie, Tibshirani, and Friedman, 2009).

Time series forecasting has been widely studied in statistics (Hyndman and Athanasopoulos, 2014;
Brockwell and Davis, 2002; Chatfield, 2000; Box and Jenkins, 1976) and econometrics (Greene,
2012; Wooldridge, 2012). It has also been influenced for a long time, by linear statistical models
such as ARIMA models (Gooijer and Hyndman, 2006). However, since time series from real
world phenomena typically behave nonlinearly (Kantz and Schreiber, 2004), nonlinear time series
models were proposed such as the bilinear model (Poskitt and Tremayne, 1986) and the threshold
autoregressive model (Tong and Lim, 1980; Tong, 1990). However, the study of nonlinear time
series analysis and forecasting is still in its infancy compared to the development of linear time
series (Gooijer and Hyndman, 2006; Fan and Yao, 2003; Teräsvirta, Tjostheim, and Granger, 2010).

In the last two decades, machine learning algorithms have drawn attention and have established
themselves as serious contenders to classical statistical models in many different fields and applica-
tions including bioinformatics, natural language processing and speech recognition (Rudin and
Wagstaff, 2014). Machine learning models, also called black-box or data-driven models (Mitchell,
1997), are examples of nonlinear and nonparametric models that make few assumptions about the
underlying data generating process, and only use historical data to learn the stochastic dependency
between a set of input and output variables. The superior performance of machine learning
algorithms has been confirmed in many predictive modeling competitions where they are often
ranked as top entries.

Although algorithms and methodologies from machine learning have proven to be very effective
in many different fields, there has been very little research at the intersection of time series
forecasting and machine learning. A notable exception is the use of the neural network algorithm
for multi-step-ahead forecasting (Zhang, Patuwo, and Michael Y., 1998; Palit and Popovic, 2005;
Kock and Teräsvirta, 2011; Crone, Hibon, and Nikolopoulos, 2011; Zhang, 2012). The lack of
research in that area was the main motivation for a number of forecasting competitions, that aim
at comparing the accuracy of machine learning algorithms with standard statistical forecasting

1

Machine learning strategies for multi-step-ahead
time series forecasting

methods under different data conditions (e.g. the Santa Fe, NN3, NN5, and the annual ESTSP
competitions Weigend and Gershenfeld, 1994; Crone, Hibon, and Nikolopoulos, 2011; Lendasse,
Honkela, and Simula, 2010).

The considered machine learning algorithms and methodologies have often provided poor forecasts
compared to simple statistical forecasting methods (Makridakis and Hibon, 2000). However, a large
number of machine learning algorithms have not yet been considered in the forecasting literature.
Also, many studies have often involved a limited amount of time series when comparing machine
learning algorithms with traditional forecasting methods. In consequence, the results cannot be
conclusive and recent debates about the process of mining the past to determine the future (see
Hand, 2009a; Price, 2009; Crone, 2009a) confirm the importance of investigating further the role of
data mining and machine learning in time series forecasting. Furthermore, Varian (2014) pointed
out the lack of research at the intersection of econometrics and machine learning, and Wasserman
(2014) use a similar argument for the general field of statistics. In consequence, a lot remains to be
done to investigate further the role and potential benefits of machine learning in dealing with time
series forecasting for the ever increasing amount of data.

1.2 Motivations and aims

The primary goal of this thesis is to contribute to the study and development of multi-step-ahead
forecasting strategies based on machine learning algorithms. Traditionally, multi-step-ahead
forecasting has been handled recursively, where a single time series model is estimated and each
forecast is computed using previous forecasts. Another approach builds a separate time series
model for each horizon, and forecasts are computed directly by the estimated model (Chevillon,
2007; Sorjamaa, Hao, Reyhani, et al., 2007; Kock and Teräsvirta, 2011).

In the forecasting literature, the recursive and direct strategies have often been considered with
linear statistical models, with few research works involving nonlinear models and even less
attention paid to machine learning algorithms. Also, the few in-depth studies that have considered
machine learning algorithms have often either considered only a neural network algorithm or have
been limited to one-step-ahead forecasting (see Berardi and Zhang (2003); Ahmed et al. (2010)).
Forecasting multi-step-ahead, rather than one-step-ahead, is more prevalent in the majority of
applications. In spite of this, it has been much less studied, partly because it is a more challenging
problem. In fact, further steps ahead are typically harder to forecast, and also there is a potentially
complex dependence between the observations at different steps ahead. Furthermore, one of the
main assumptions of many machine learning algorithms is that the data set is composed of a set of
independent observations, while one of the main features of a time series is the time dependence
between the different observations.

This thesis will address these different issues by developing and comparing different multi-step
forecasting strategies based on machine learning algorithms under different conditions, including
time series length, forecast horizons and data generating processes. The different strategies will be
compared from the perspective of the bias and variance components of the mean squared forecast
errors.

Analyzing the behavior of bias and variance is paramount to understanding the different sources
of errors and inner mechanics of the strategies over the forecast horizon. These are fundamental
concepts that reveal the relation with model complexity, model misspecification, and data adequacy.
An in-depth study could therefore give insights into the different interactions between time
series length, model complexity, forecast horizon (i.e. number of steps ahead), and the strategy’s
performance. Finally, the different strategies will also be evaluated on real-world time series from
two different forecasting competitions.

2

Machine learning strategies for multi-step-ahead
time series forecasting

Multi-step forecasts can be produced recursively by iterating a one-step model, or directly using a
specific model for each horizon. In practice, should the forecaster use the recursive or the direct
strategy? The best between these two strategies involves a trade-off between bias and estimation
variance that depends on many interacting factors, including the model complexity, the underlying
data generating process, the time series length and the forecast horizon. A good trade-off can be
difficult to achieve in practice with a limited amount of data. Using machine learning algorithms
makes the trade-off even more difficult. So, choosing between the recursive and direct strategies is
not an easy task in real-world forecasting problems.

This thesis will address this issue by proposing multi-stage forecasting strategies that do not
consider the recursive and direct strategies as competitors, but seek to combine their best properties.
The main idea is to generate recursive linear forecasts, and then adjust these forecasts by modeling
the multi-step forecast residuals with direct nonlinear models at each horizon, called rectification
models.

We will propose a first multi-stage strategy, called the rectify strategy, that estimates the rectification
models with the nearest neighbors model. Because recursive linear forecasts often need small
adjustments with real-world time series, we will also consider a second multi-stage strategy, called
the boost strategy, that estimates the rectification models using gradient boosting algorithms that
involve the so-called weak learners.

Recursive forecasts with nonlinear models can suffer from the amplification of errors over the
horizon. Also, minimizing one-step-ahead forecast errors does not guarantee the minimum
for multi-step-ahead errors with nonlinear models, and as a result, the recursive strategy is
asymptotically biased. In consequence, the direct strategy is often adopted to generate multi-step
forecasts with machine learning algorithms.

However, the direct strategy has a problem in generating forecasts from potentially very different
models at different forecast horizons. In fact, because every model is selected independently at
each horizon, it is possible for consecutive forecasts to be based on different conditioning infor-
mation and different model forms. This can lead to irregularities in the forecast function. These
irregularities are manifest as a contribution to the forecast variance. The problem is exacerbated
when each of the models is allowed to be nonlinear and nonparametrically estimated, as with
machine learning models.

This thesis will address this issue by proposing multi-horizon forecasting strategies that take
advantage of the information contained in other forecast horizons to select the lag order and the
hyperparameters of each model. In particular, multi-horizon strategies minimize forecast errors
over multiple horizons rather than just over the horizon of interest.

There is often a gap between the theory and the practice of forecasting. Although forecasting
theory is of paramount importance, real-world forecasting problems often involve tasks that are
typically neglected in theoretical studies. For example, a typical forecasting problem will require a
data preprocessing step which includes data cleansing and feature engineering as well as finding a
good balance between computational complexity and statistical accuracy.

To experiment on a real-world forecasting problem in a real competition setting, we took part in
the Load Forecasting track of the Global Energy Forecasting Competition 2012. The competition
involved a hierarchical load forecasting problem for a US utility with 20 geographical zones. The
available data consisted of the hourly loads for the 20 zones and hourly temperatures from 11
weather stations, for four and a half years. We were required to backcast and forecast hourly loads
for 21 time series. Our team, TinTin, ranked fifth out of 105 participating teams, and we have been
awarded an IEEE Power & Energy Society award.

3

Machine learning strategies for multi-step-ahead
time series forecasting

1.3 Contributions

1.3.1 Publications and conferences

In the following, the related publications and conferences are given for each chapter.

• Chapter 4: Bias and variance analysis for multi-step forecasting

– S Ben Taieb and AF Atiya (2014). “A bias and variance analysis for multi-step time
series forecasting.” Submitted to IEEE Transactions on Neural Networks and Learning
Systems (under revision)

– Oral presentation at the 26st European Conference on Operational Research (EURO), Rome,
Italy, July 1-4, 2013.

• Chapter 5: Multi-stage forecasting strategies

– S Ben Taieb and RJ Hyndman (2014a). Boosting multi-step autoregressive forecasts. In:
Proceedings of the 31th International Conference on Machine Learning (ICML), pp.109–117

– S Ben Taieb and RJ Hyndman (2014b). “Recursive and direct multi-step forecasting: the
best of both worlds.” Submitted to International Journal of Forecasting (under revision)

– Oral presentation at the International Conference on Machine Learning (ICML), Beijing,
China, June 21-26, 2014.

– Oral presentation at the 33st Annual International Symposium on Forecasting (ISF), Seoul,
Korea, June 23-26, 2013.

– Oral presentation at the 32st Annual International Symposium on Forecasting (ISF), Boston,
USA, June 24-27, 2012.

• Chapter 6: Multi-horizon forecasting strategies

– S Ben Taieb, G Bontempi, A Atiya, et al. (2012). A review and comparison of strategies
for multi-step ahead time series forecasting based on the NN5 forecasting competition.
Expert Systems with Applications 39(8), 7067–7083.

– G Bontempi and S Ben Taieb (January 2011). Conditionally dependent strategies for
multiple-step-ahead prediction in local learning. International Journal of Forecasting
27(3), 689–699.

– S Ben Taieb, A Sorjamaa, and G Bontempi (2010). Multiple-output modeling for multi-
step-ahead time series forecasting. Neurocomputing 73(10-12), 1950–1957.

– Oral presentation at the 31st Annual International Symposium on Forecasting (ISF), Prague,
Czech Republic, June 26-29, 2011.

– Poster presentation at the IEEE International Joint Conference on Neural Networks (IJCNN),
Atlanta, Georgia, USA, June 14-19, 2009.

• Chapter 7: The Global Energy Forecasting Competition 2012

– S Ben Taieb and RJ Hyndman (August 2013). A gradient boosting approach to the
Kaggle load forecasting competition. International Journal of Forecasting, 1–19.

– Oral presentation at the IEEE Power and Energy Society General Meeting (PESGM), Van-
couver, Canada, July 21-25, 2013. [Invited]

– Oral presentation at The second “Workshop on Industry & Practices for Forecasting” (WIP-
FOR), Paris, France, June 2013.

4

Machine learning strategies for multi-step-ahead
time series forecasting

In the following, we list the publications that have not been considered in this thesis as well
as some other conferences we attented:

• Other publications:

– G Bontempi, S Ben Taieb, and YA Le Borgne (2013). Machine Learning Strategies for
Time Series Forecasting. In: Business Intelligence. Ed. by MA Aufaure and E Zimányi.
Vol. 138. Lecture Notes in Business Information Processing. Springer, pp.62–77.

– A Vaccaro et al. (November 2012). Adaptive local learning techniques for multiple-step-
ahead wind speed forecasting. Electric Power Systems Research 83(1), 129–135.

– S Ben Taieb and G Bontempi (December 2011). Recursive Multi-step Time Series
Forecasting by Perturbing Data. In: Proceedings of the 11th IEEE International Conference
on Data Mining (ICDM). IEEE, pp.695–704.

– S Ben Taieb, G Bontempi, A Sorjamaa, et al. (2009). Long-Term Prediction of Time Series
by combining Direct and MIMO Strategies. In: Proceedings of the 2009 IEEE International
Joint Conference on Neural Networks (IJCNN). Atlanta, U.S.A., pp.3054–3061

• Other conferences:

– The IEEE International Conference on Data Mining (ICDM), Brussels, Belgium, December
2012

– The International Conference on Data Mining (ICDM), Vancouver, Canada, December
2011.

– The 18th European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium,
April 2010.

1.3.2 Research activities

In addition to the conferences, I have attended the following three summer schools:

• Machine Learning Summer School (MLSS), RUC, Beijing, China, June 2014.

• Machine Learning Summer School (MLSS), Purdue University, USA, June 2011.

• Mobility, Data Mining and Privacy (MODAP), Rhodos Island, Greece, August 2010.

During my PhD studies, I have made the following two research visits:

• The Swiss AI Lab IDSIA, Lugano, Switzerland, February 2013 (hosted by Prof. Giorgio Corani).

• Business & Economic Forecasting Unit, Monash University, Australia, September 2011 – January
2012 (hosted by Prof. Rob J. Hyndman).

1.3.3 Software development

Although the forecast package for R (Hyndman and Khandakar, 2008) allows to apply many
forecasting methods, a package for applying different multi-step-ahead forecasting strategies does
not seem to be yet available, especially for machine learning algorithms. To fill this gap, I have
developed a new R package that allows to apply all the strategies presented in this thesis. The
package should be available online soon.

5

Part I

Overview

6

Chapter 2

Background

The questions addressed in this thesis are at the intersection of machine learning and time series
forecasting. The goal of this chapter is to present different concepts that will be frequently used
throughout the thesis, from both domains.

Machine learning and time series forecasting are both large fields of research, so we will focus on
concepts and methods that we will later build upon in future chapters. Specifically, we will first
introduce the broad concept of learning from data, together with some learning algorithms that
will be considered in the subsequent chapters. A second part will be devoted to the concepts and
methods in time series forecasting including time series decomposition and autoregressive models.

For a broader introduction to time series forecasting, a number of references are available, e.g.
Hyndman and Athanasopoulos (2014); Teräsvirta, Tjostheim, and Granger (2010); Fan and Yao
(2003); Brockwell and Davis (2002); Chatfield (2000). For machine learning, key references include
James et al. (2013); Abu-Mostafa, Magdon-Ismail, and Lin (2012); Mohri, Rostamizadeh, and
Talwalkar (2012); Murphy (2012); Hastie, Tibshirani, and Friedman (2009).

2.1 Learning from data

In several scientific disciplines, we want to better understand or make predictions about a cer-
tain phenomenon under study. The process typically involves observing the phenomenon and
constructing a model of that phenomenon by finding relations between several variables.

When the phenomenon has been studied for a long time or if it involves few variables, we can often
build analytical solutions about the system or quantity of interest.

However, in many cases, the system is complex and depends on a large number of variables. In
those cases, finding an analytical solution may not be possible.

In many fields such as science, engineering and economics, we can collect observations about some
phenomenon, called data, that may reveal a lot about the underlying phenomenon. In particular,
from this data, we can learn a model that approximates the true underlying phenomenon.

Learning from data is very powerful since the process can be automated and will not require a case
by case analysis of the phenomenon under study. However, depending on the field, learning from
data can be more or less powerful. For example, learning from financial data can be more difficult
than learning from electricity consumption data.

7

Machine learning strategies for multi-step-ahead
time series forecasting

One generally builds a model for one of two purposes: explanation or prediction. Shmueli (2010)
provides a discussion about the distinction between explanatory and predictive modeling. An ex-
planatory model gives an explanation of the behavior of the phenomenon, notably the interactions
between the different components, while a predictive model provides predictions for new or future
observations. In this work, we are mainly concerned with predictive models.

2.1.1 Different views and types of learning

Learning from data has been considered in different fields of research at different times. Each field
has developed its own jargon and methods. However, when comparing these different fields, we
can see that they have a common goal: extracting knowledge from data. Among the different fields
dedicated to the subject, the main ones are Machine learning, Statistics and Data mining.

Machine learning is a relatively young field that has evolved in the computer science community
and has a name that distinguishes it from human learning. Statistics is an older field that has a lot in
common with Machine learning but has evolved in the field of mathematics. The difference between
Machine learning and Statistics has motivated interesting debates including the article “Statistical
Modeling: The Two Cultures” by Leo Breiman (Breiman, 2001). The main difference between these
two fields is the assumption about the data. In Machine Learning, we often assume that the data
has been generated from some unknown data generating process and different learning algorithms
are used to approximate it. In Statistics, we usually assume a data model is the true data generating
process and we try to estimate the parameters of this data model. So, Machine learning deals with
learning algorithms or procedures while Statistics deals with models.

Compared to Machine learning and Statistics, Data mining is more focused on data analysis than
on prediction. In particular, it focuses on extracting patterns and anomalies from large data sets.
Hand (1998) and Friedman (1998) provide excellent discussions about the differences between
Data mining and the other fields.

However, the gaps and differences between these three communities are shrinking and we expect
these fields to combine in the future. Recently, the term Data Science has emerged as a general field
that includes the different fields related to the analysis of data. Lin, Genest, et al. (2014) provide a
broad overview of the past, present and future of the general field of Statistical science.

Learning from data consists in using a set of observations (also called examples) to uncover an
underlying process. This broad premise is not easy to fit into a single framework. In consequence,
different types of learning have been considered in the literature depending on the type of data
involved in the learning process. Examples include unsupervised learning, reinforcement learning,
active learning and online learning (Abu-Mostafa, Magdon-Ismail, and Lin, 2012).

In this work, we will be concerned with a typical learning scenario called supervised learning where
each example contains an input and a target output. More precisely, we will focus on the regression
learning problem, that is where the output is a quantitative variable rather than a qualitative
variable as in classification.

2.1.2 The regression learning problem

In practice, we often have a data set D composed of N examples {(x1, y1), . . . , (xN , yN)} where xi ∈Rd
is a vector of d input variables and yi ∈R is the corresponding target or output variable. Each data
point can be seen as a realization from the joint distribution F(x, y) = F(y|x)F(x) where x is a vector
of d random input variables and y is a random output or target variable.

8

Machine learning strategies for multi-step-ahead
time series forecasting

The regression learning problem often consists in using the data set D to build a model that will be
used to predict the output for some new inputs x sampled from F(x, y), that are not necessarily
in the data set D. The problem involves estimating the stochastic dependence between x and y;
in other words, we need to estimate the conditional distribution F(y|x). However, for prediction
purposes, it is often sufficient to estimate the conditional expectation given by:

f (x) = E[y|x], (2.1.1)

which is easier to estimate than the complete distribution.

We will assume the regression problem consists in learning the unknown target function f : Rd →R

from the data set D. Given a set of candidatesM (called the hypothesis set1), a learning algorithm
A will use the data set D to pick a hypothesis m : Rd → R from M, that best approximates f ,
according to a loss function L : R×R→R

+. In this work, we will limit ourselves to the quadratic
loss function defined as L2(ŷ, y) = (ŷ − y)2.

Le us denote mD the hypothesis selected by the learning algorithm A from the hypothesis setM
based on the data set D. Then, we can define the generalization error (also called the risk or the
out-of-sample error) of the hypothesis mD as

Eout(mD) = Ex[(mD(x)− y)2], (2.1.2)

which measures the cost of using mD to predict y from x for new examples, that were not available
in the data set D. In the following, we will use m and mD, interchangeably.

We want to select the best hypothesis that generalizes well outside of the data set D; in other words,
the hypothesis with the smallest generalization error, which can be computed as follows:

m∗ = argminm∈MEout(m)

whereM is the hypothesis set and Eout is defined in (2.1.2).

However, in practice, explicitly computing the generalization error is infeasible since we would
need to know the distribution F(x, y), that is usually not available. In fact, we only have access to
the data set D which contains N independently and identically distributed (i.i.d.) examples that
have been sampled from F(x, y).

What we can do is to try to estimate the generalization error by computing the in-sample error (also
called the empirical risk), defined as

Ein(m) =
1
N

N∑
i=1

(m(xi)− yi)2

which represents the average loss over the available data points.

Then, we can minimize the empirical risk to select the best hypothesis as follows:

m∗ = argminm∈MEin(m), (2.1.3)

which is also called empirical risk minimization.

1This should not be confused with statistical hypothesis testing (Lehmann and Romano, 2005).

9

Machine learning strategies for multi-step-ahead
time series forecasting

In practice, we hope that empirical risk minimization performs similarly to true risk minimization.
In others words, we would like to have

argminm∈MEin(m) ≈ argminm∈MEout(m).

A natural question that arises is how well Ein estimates Eout?

We can find some hints to answer this question by making an analogy with a professor that tries
to gauge how well the students have learned the course material. Typically, the question exams
are new exercises that the students have not yet seen during the class. This allows the professor to
obtain a good measure of how well the students have learned the course material. However, if the
students receive as exam exercises the same questions they have used during the class, then the
scores will not faithfully represent what the students have learned.

We can make the same distinction between the out-of-sample and the in-sample errors. In fact,
the out-of-sample error Eout represents how well the hypothesis will generalize to new examples
that have not been seen before. In expression (2.1.2), we can see that Eout is computed on the
entire space but intuitively if we want to compute it on a finite sample data set, we must use new
data points that have not been used during the training process. This is similar to the new exam
questions that have not been used during the class.

By contrast, the in-sample error Ein is computed on data points that have been used for training.
So, it may not reflect the true performance in a real scenario with new examples that have not
been used in training. In consequence, the in-sample error Ein can be a biased estimate of the
out-of-sample error Eout with an optimistic bias since the same examples have been used for both
training and testing the generalization ability of the hypotheses.

The discrepancy between Ein and Eout will depend on several factors including the the hypothesis
setM and the size of the data set D.

Of course, the ideal hypothesis set is M = {f } that contains only the target function. But, f is
exactly the function we are trying to estimate!

If the hypothesis setM is too complex, it will allow us to estimate a large set of functions and we
can obtain a small in-sample error. However, we may fail to generalize well outside the training
data since we did not learn but memorized the training data. This phenomenon is referred to as
overfitting.

If the hypothesis setM is too simple, we may fail to approximate f and will have a large in-sample
error. The empirical risk minimization will be closer to the true risk minimization in that case but
it will also worsen the minimum of the true risk. This phenomenon is referred to as underfitting.

In practice, the choice of the hypothesis setM needs to find a good trade-off between approximating
f on the training examples and generalizing on new examples.

One way to look at this trade-off is through the Vapnik-Chervonenkis (VC) theory, a subbranch of
statistical learning theory (Vapnik, 1998). In particular, the VC generalization bound2 provides a
bound for the out-of-sample error Eout using the in-sample error Ein plus a penalty term Ω that
depends on the complexity (or capacity) of the hypothesis setM and the size of the data set D.

With finite hypothesis sets, the cardinality is typically used as a measure of the capacity of a
hypothesis setM. However, the VC bound uses the concept of VC dimension that can be computed
for infinite hypothesis sets. If the reader is familiar with measures of complexity such as the

2For the reader’s information, generalization bounds are often derived using concentration inequalities such as
Hoefdding and McDiarmid’s inequalities (Boucheron, Lugosi, and Massart, 2013).

10

Machine learning strategies for multi-step-ahead
time series forecasting

dimensionality or the number of free parameters, the VC dimension can be seen as a more
elaborated measure of complexity. Other measures of complexity have also been proposed in the
literature such as the covering numbers and the Rademacher complexity (Mohri, Rostamizadeh,
and Talwalkar, 2012).

The main argument is that high capacity (i.e. large VC dimension) and good generalization are at
odds. In fact, ifM has a high capacity that allows to explain every possible dataset, we should not
expect a good generalization. On the other hand, ifM has a small capacity, but at the same time
provides small in-sample errors, then we can expect a good generalization. In other words, the
VC bound suggests seeking a trade-off between reducing in-sample errors versus controlling the
capacity of the hypothesis set.

One nice property of the VC generalization bound is that it is distribution independent and so it
holds for all possible distributions. However, its generality is also its weakness since the bound may
be too loose to give any useful information of practical use. In addition, the exact VC dimension is
not easy to compute for many hypothesis sets. Finally, it is important to note that the VC analysis
only depends on the hypothesis setM, but not on the function f or the learning algorithm A.

Another way to look at the trade-off between approximating f on the training examples and gener-
alizing on new examples is through the so-called bias and variance trade-off, from the estimation
theory (Geman, Bienenstock, and Doursat, 1992).

Let us assume y = f (x) + ε, E[ε] = 0 and E[ε2] = σ2. By taking the expectation of expression (2.1.2)
over all data sets D, the expected out-of-sample error for our learning model can be written as

Eout = ED,ε[Ex[(y −mD(x))2]].

which can be decomposed as follows:

Eout = ED,ε,x[(y −mD(x))2]

= ED,ε,x[(y − f (x))2] +ED,ε,x[(f (x)−mD(x))2]

= Eε,x[(y − f (x))2] +ED,x[(m̄(x)− f (x))2] +ED,x[(mD(x)− m̄(x))2]

= Eε,x[(y − f (x))2]︸ ︷︷ ︸
Noise variance σ2

+Ex[(m̄(x)− f (x))2]︸ ︷︷ ︸
Squared bias

+ED,x[(mD(x)− m̄(x))2]︸ ︷︷ ︸
Estimation variance

(2.1.4)

where m̄(x) = ED[mD(x)].

We can see in expression (2.1.4) that Eout can be decomposed into three components, namely the
noise variance, the squared bias and the estimation variance.

The bias component represents the consistent offset of the average predictions m̄(x), away from
f (x). The variance component relates to the stability of the predictions built on different data sets
D sampled from the joint distribution F(x, y), and represents the variation of the predictions mD(x)
around their mean, m̄(x).

In case there is no bias and no variance, that is m̄(x) = f (x) and mD(x) = m̄(x), we can see in (2.1.4)
that Eout will simply be equal to the noise variance σ2, which is the irreducible error and the lowest
value that Eout can achieve. However, in practice, this case is rarely met since any learning model is
typically prone to bias and variance.

The ideal configuration is to have both a low bias and a low variance. However, making the learning
model more flexible so that the bias decreases will induce an increase in variance, and vice versa.
So, this ideal configuration is never achievable in practice. Instead, it is important to find a good
trade-off between bias and variance to achieve the smallest Eout.

11

Machine learning strategies for multi-step-ahead
time series forecasting

In contrast to the VC theory, a bias and variance analysis takes into account the function f we
are trying to estimate as well as the learning algorithm. This can be important since different
learning algorithms can have a different Eout for the same hypothesis setM. In addition, the bias
and variance decomposition applies to regression problems with squared errors. In consequence,
we choose it as the main tool to study generalization throughout this work.

2.1.3 The cure for overfitting

We have seen that minimizing in-sample errors does not necessarily lead to a good estimate of
the out-of-sample error, especially if the hypothesis set has high capacity and/or if the data set is
small. This is because the same examples are used for both training the hypothesis and assessing
its generalization error. In consequence, we cannot trust the in-sample error as an estimate of the
out-of-sample error since it can lead to the selection of models that do not generalize well outside
of the data set.

By taking that information into account, the out-of-sample error of a hypothesis m, Eout(m) , can be
written as

Eout(m) = Ein(m) +Ω(m)︸︷︷︸
overfit penalty

. (2.1.5)

So, minimizing the in-sample error essentially disregards the overfitting phenomenon.

There are essentially two main classes of methods that address overfitting: regularization and
validation (Abu-Mostafa, Magdon-Ismail, and Lin, 2012). Regularization attempts to compute an
estimate Ω̂(m) of the overfit penalty Ω(m) by making some assumptions on the hypothesis setM.
Then an estimate of the out-of-sample error Eout(m) is given by Êout(m) = Ein(m) +Ω̂(m). Validation,
on the other hand, directly computes Êout(m), typically using resampling methods.

Regularization consists in penalizing the in-sample error by an overfit penalty term that represents
an estimate of the optimism or the bias of the in-sample error with respect to the out-of-sample
error. Hypotheses that are too complex will typically have a small in-sample error but a large
overfit penalty term. Too simple hypotheses will have a large in-sample error but a small overfit
penalty term. The best hypotheses will have a good trade-off between these two terms and so will
have a good generalization property.

Different methods for computing the overfit penalty have been proposed in the literature. Among
those, there are the model-dependent penalties (Claeskens and Hjort, 2008) such as Akaike
information criterion (AIC) (Akaike, 1969) and Bayesian information criterion (BIC) (Schwarz,
1978). Many other criteria have been proposed in the literature such as Mallow’s Cp (Mallows,
2000) and the Minimum description length (MDL) (Rissanen, 1986), which is based on an optimal
coding viewpoint (Cover and Thomas, 2012) and is closely related to BIC.

The VC analysis that allows us to understand the overfitting phenomenon can also be used to
deal with overfitting. The idea is to have a measure of the complexity of a class of models and
to penalize all models in that class. This is in contrast to model-based penalties that penalize
individual models. This is called structural risk minimization.

As an alternative to regularization which makes an adjustment to the in-sample error, the validation
approach directly estimates the out-of-sample error by evaluating the model performance on new
examples that have not been used to fit the model. In the following, we will present a general
overview of the main validation methods. Arlot and Celisse (2010) provide a detailed survey of
different validation methods, including their statistical properties.

12

Machine learning strategies for multi-step-ahead
time series forecasting

Ideally, in order to estimate the true generalization error of a hypothesis m, we would need an
independent and very large data set, called a test set. However, in practice, such data set is rarely
available and we only have the data set D. A number of techniques have been proposed to simulate
the true out-of-sample setting using the available data set D. The general idea is to holdout a subset
of examples from the fitting process and to evaluate the hypothesis on the held out examples.

A very simple approach, called the validation set approach, consists in randomly splitting the
data set D containing N observations into a training set Dtrain with N −M observations and a
validation set or hold-out set Dval with M observations. To estimate the out-of-sample error, we run
the learning algorithm and use the training set Dtrain to find the final hypothesis m− ∈M, where
we indicate with the minus superscript that some examples of D have not been used. Then, we can
predict the output of the examples in the validation set Dval with the final hypothesis and compute
the validation error:

Eval(m
−) =

1
M

∑
xi∈Dval

(m−(xi)− yi)2. (2.1.6)

We know that Ein(m−) is a biased estimate of Eout(m−) but what can we say about Eval(m−) ? Because
the validation set Dval is independent from the training set Dtrain, we can write EDtrain

[Eval(m−)] =
Eout(m−), that is the validation error is an unbiased estimate of the out-of-sample error. Also, what
can we say about the reliability of Eval as an estimate of Eout?

We got an unbiased estimate of Eout by setting aside M examples from D. However, there is a price
to pay for that, and this price will depend on the value of M. In fact, if M is small, then m− will
be estimated using a training set with a larger size but Eval will be computed using few examples
and so will be less reliable. On the other hand, if M is large then Eval will be more reliable since
computed on more examples but M −N will not be big enough to obtain a good hypothesis m−.

With the validation approach, we are trying to estimate the out-of-sample error ofm− but the initial
goal was to estimate that of m. In fact, m− is the hypothesis computed on a subset of D with N −M
examples while m is computed on the entire data set D with N examples.

In addition, because m− is based on a smaller data set, Eout(m−) > Eout(m) so m− is not the best
hypothesis. However, we don’t need to output m− as the final hypothesis. In fact, provided that M
is large enough, Eval(m−) will likely still be better at estimating Eout(m) than Ein(m). So we can use
this estimate but output m as the final hypothesis.

This shows again the importance of the value ofM that should not be too large so that the hypothesis
is based on a data set not too far from D and not too small to get a reliable Eval. In practice, one
rule of thumb is to use M = 0.2×N with the validation set approach (Abu-Mostafa, Magdon-Ismail,
and Lin, 2012).

Instead of considering a single split of the data set D, we can also have multiple splitting and
combine the results from those different splits. This idea is used by the so-called cross-validation
methods. We will consider two variants namely Leave-One-Out (LOO) cross-validation that con-
siders N splits where each split uses M = 1 and V -fold cross-validation which uses V splits where
each splits uses M = N

V . Key references for cross-validation are Stone (1977) and Allen (1974).

With LOO, the validation set contains a single example and the remaining N −1 examples form the
training set. We can produce N such partitions by having a different example in the validation set.
For all these partitions, we apply the same procedure as with the validation set approach to compute
a validation error as in (2.1.6). Then, we average the results to obtain the LOO cross-validation

13

Machine learning strategies for multi-step-ahead
time series forecasting

estimate, given by

ECV =
1
N

N∑
i=1

Eval(m
−
i), (2.1.7)

with
Eval(m

−
i) = (m−i (xi)− yi)2

where m−i is the hypothesis learned from D\{(xi , yi)}, that is the data set D from which we removed
the ith example.

One advantage of LOO is that we use M = 1 and so m− is very close to m. However, Eval is based
on one example and so is not reliable. However, because we are applying the procedure N times,
the hope is that it is close to the validation set approach that uses a validation set containing N
observations.

LOO is a computationally demanding procedure since we need to run the learning procedure N
times for a data set containing N examples, which can be time consuming when N is large. The
only case where LOO can be computed quickly is with linear models which have an analytical
solution that does not require to run the procedure N times (Allen, 1974). A key reference for LOO
with linear model is Shao (1993), who showed that LOO is inconsistent.

An alternative to LOO is V-fold cross-validation which includes more observations in each valida-
tion set for each split but then has less splits. More precisely, V-fold cross-validation splits the data
set D into V disjoint sets (or folds) D1, . . . ,DV where each Dv has a size of N/V . For all these sets,
we apply the same procedure as with the validation set approach, that is we learn the hypothesis
on D \Dv and we compute the validation error on Dv . Then, we average the results to obtain the
V-fold cross-validation estimate as follows:

ECV =
1
V

V∑
v=1

Eval(m
−
Dv), (2.1.8)

with
Eval(m

−
Dv) =

V
N

∑
xi∈Dv

(m−Dv (xi)− yi)
2,

where m−Dv is the hypothesis learned from D \Dv .

By comparing expression (2.1.8) with expression (2.1.7), we can see that LOO is equivalent to N -
fold cross-validation. Compared to LOO, V -fold cross validation allows a decrease in computational
time when V << N . However, less examples will be used to learn the hypothesis m− which will
increase the discrepancy between Eout(m−) and Eout(m).

This brings us to the bias and variance trade-off with V -fold cross-validation methods. ECV in
expression (2.1.8) can be seen as an estimate of Eout and so has a bias and variance which will
depend notably on the value of V .

If V is large, as with LOO, the hypothesis m− is learned from N −1 examples and so is very close to
the hypothesis m learned from the complete data set with N examples. So, in that case, the bias
will be small. However, since each hypothesis will be learned from a training set that differs only
on one example, the error of the different hypotheses will be highly correlated which in turn will
induce a larger variance.

If V is small, the hypothesis m− is learned from less examples compared to m and so the bias is
large. However, since the different training sets will differ on many examples, the errors of the
different hypothesis will be less correlated and so, in this case, the variance will be smaller.

14

Machine learning strategies for multi-step-ahead
time series forecasting

In consequence, there is a bias-variance trade-off that depends on the value of V in V -fold cross-
validation. In practice, a common choice is V = 5 or V = 10 since these values have been shown
empirically to provide a good bias-variance trade-off (Kohavi, 1995).

Bootstrap (Efron, 1979) is another resampling method to estimate the out-of-sample errors. The
idea is to sample the initial data set with replacements to form new datasets with the same size
as the initial data set. To estimate the out-of-sample error, we learn a model for each bootstrap
datasets and use the initial data set as testing set, but we only use the examples that are not in
the bootstrap data set to compute the errors to avoid overfitting. We refer the reader to Efron and
Tibshirani (1993) for an overview of the bootstrap. Also, Kohavi (1995) provides a comparison
between cross-validation and bootstrap.

In this section, we have seen that there are mainly two approaches to estimate the out-of-sample
error by taking into account the bias of the in-sample error: regularization and validation.

There is no best approach and the performance of each approach will depend on many factors,
such as the size of the data set and the validity of the assumptions. In addition, the two approaches
can be combined: for example some regularization methods use validation to find the right amount
of regularization needed. Also, in some cases, it has been shown that some regularization methods
are equivalent to validation methods. For example, Stone (1977) showed that AIC and LOO
are asymptotically equivalent. For linear models, Shao (1997) showed that minimizing BIC is
equivalent to leave-k-out cross-validation, that is where k examples are left out at each step instead
of one example as in LOO.

One advantage of the regularization methods such as AIC and BIC is the decrease in computational
time which can be useful when we need to compute it for a large number of hypotheses. Also, these
methods are more suited for small sample data sets since the whole data set is used to compute
the errors. On the other hand, these methods require to make some assumptions about the true
underlying model, to compute the model degrees of freedom and to be able to estimate the error
variance. In practice, the assumption may be too strong and it may be hard to compute the degrees
of freedom or the error variance in some cases.

The main advantage of the validation methods is their generality. In fact, they make no assumptions
about the underlying model and so can be applied with any model. One drawback of these methods
is the loss of data when we holdout some examples from the training set. This can be unfeasible
in practice when we only have few examples. Although these methods are computationally
demanding, nowadays with fast computers, it is not anymore an issue. We refer the reader to Arlot
and Celisse (2010) for a comprehensive survey about validation methods.

2.1.4 The learning procedure

In the previous section, we have discussed several alternatives to estimate the out-of-sample error
of a given hypothesis. However, estimating the out-of-sample error is not our primary goal. Instead
we want to select the best hypothesis among a hypothesis set and for that purpose, we needed a
good estimate of the out-of-sample error. In this section, we will present the different steps of a
learning procedure that allows us to select the best hypothesis from a hypothesis set.

The learning procedure can be decomposed in the following steps:

1. Model generation. Given an hypothesis setM, define a sequence of hypothesis sets with
increasing complexityM0 ⊂M1 ⊂ · · · ⊂MS =M.

15

Machine learning strategies for multi-step-ahead
time series forecasting

The hypothesis setM is typically an arbitrary choice when there is no prior knowledge about
the true underlying function. Otherwise, the prior knowledge can be used to select a better
hypothesis set.

We denote m(·;β,ψ) a hypothesis of the hypothesis setM where β ∈Rd is a set of parameters
and ψ ∈ {ψ(0),ψ(1), . . . ,ψ(S)} is a set of hyperparameters.

Different values of the hyperparameters, i.e. ψ(0),ψ(1), . . . ,ψ(S), define different classes of
hypotheses, i.e.M0,M1, . . . ,MS . In other words, the hyperparameters ψ are directly related
to the structure and complexity of the hypothesis m.

A given class of hypothesis,Ms, or equivalently a given value of the hyperparameters ψ(s),
defines a subset of the hypothesis setM where all the hypotheses have the hyperparameters
ψ = ψ(s), and each hypothesis has a different value of the parameters β.

2. Parametric identification. For each hypothesis setMs, apply the empirical risk minimization
as in (2.1.3) to find the best hypothesis of that hypothesis set, m(·;β∗,ψ(s)). It is worth noting
that some models do not have a parametric identification stage, e.g. the KNN model (see
Section 2.2.3).

3. Model validation. For each hypothesis setMs, compute Êout(m(·;β∗,ψ(s))), an estimate of
the out-of-sample error of the hypothesis m(·;β∗,ψ(s)). For example, we can use 5-fold cross-
validation to estimate Eout, as explained in the previous section.

The parametric identification and the model validation stages form what is called the struc-
tural identification stage.

4. Model selection. Select the hypothesis set with the lowest estimated out-of-sample error, that
is s∗ = argminsm(·;β∗,ψ(s)) and return its best hypothesis m(·;β∗,ψ(s∗)).

Model selection is also called hyperparameters optimization since we optimize the value of the
hyperparameters. Instead of selecting the best model, we can also apply model combination,
for example, by averaging several models. With a simple computation, one can show that
the simple average of two unbiased estimators with a non zero variance returns a combined
estimator with reduced variance. So, one of the main motivations of model combination is to
obtain a model with a smaller variance.

2.2 Learning regression algorithms

In this section, we present several learning regression algorithms that will be considered in future
chapters, namely the linear model, neural networks, nearest neighbors and gradient boosting. We
will briefly describe each model and, if applicable, explain how the parametric identification is
performed. Recall that we want to solve a regression learning problem as described in Section 2.1.2.

2.2.1 Linear model

The linear model is a parametric model that computes a linear combination of the input variables
using a vector of parameters β (also called coefficients) as follows:

m(x) =
p∑
k=0

βkxk = β′x, (2.2.1)

where x0 = 1 and β ∈Rp.

16

Machine learning strategies for multi-step-ahead
time series forecasting

Let us denote by X the N × (p+ 1) matrix whose rows contains the inputs xi as row vectors, and
denote by y the N × 1 target vector whose components are the output values yi . One of the most
popular methods to estimate the parameters β is the ordinary least squares (OLS) in which the
residual sum of squares is minimized. In other words, the parameters are estimated by minimizing
the least squares criterion:

Q(β) = (y −Xβ)′(y −Xβ). (2.2.2)

It can be shown that the unique solution to this problem can be easily computed analytically and is
given by:

β̂ = (X ′X)−1Xy, (2.2.3)

assuming (X ′X) is non-singular. If (X ′X) is singular, then the parameters β̂ are not uniquely
defined and can be computed using a pseudo-inverse.

After estimating the parameters, the fitted values at the training inputs can be computed as follows:

ŷ = Xβ̂ = X(X ′X)−1X︸ ︷︷ ︸
H

y, (2.2.4)

where the matrix H is called the hat matrix because H “puts a hat” on y.

In expression (2.2.1), the linear model is presented as an algorithm or a method for making
predictions from an input x. However, in the statistics literature, it is sometimes assumed that
the linear model is the true underlying data generating process. In other words, the examples are
assumed to be sampled from the following data generating process:

y =
p∑
k=0

βkxk + ε,

where ε is a noise term, and the function f defined in expression 2.1.1 is indeed linear in the x
variables. Under the correct model and appropriate conditions, OLS enjoy several properties such
as unbiasedness and consistency (Wasserman, 2004).

In expression (2.2.1), we can see that the model is linear not only in terms of the xk variables but
also in the parameters βk . The OLS solution given in (2.2.3) suggests that the xk are just constants
as far as the algorithm is concerned, while the linearity in the parameters βk is the key property for
the linear model. This observation suggests that we do not have to use the initial inputs but we
can also consider transformations of these inputs and still use all the linear machinery to estimate
the parameters. For example, we can include nonlinear transformations of the input variables
to model nonlinear phenomenon. In other words, the model given in (2.2.1) is linear in both the
input variables and the parameters, but we can also consider models that are nonlinear in the input
variables but linear in the parameters.

The main idea is to derive from the input vector x, a new set of variables z, called features, that are
transformations of the raw input variables. In other words, we compute B(x) = (B1(x), . . . ,BL(x)) to
obtain z = (z1, . . . , zL) where Bl is a basis function.

For example, if x = (1,x1,x2), we can define the polynomial basis functions B1(x) = 1, B1(x) =
x1, B2(x) = x2, B3(x) = x2

1, B4(x) = x1x2 and B5(x) = x2
2; the new features are then z =

(B1(x),B2(x),B3(x),B4(x),B5(x)) = (1,x1,x2,x
2
1,x1x2,x

2
2).

The beauty of this approach consists in the fact that we can model nonlinear phenomenon by using
a linear model with nonlinear transformations of the input variables.

17

Machine learning strategies for multi-step-ahead
time series forecasting

Let us consider a univariate regression case where we have only one input variable. After defining
our basis functions, we can write the model as:

m(x) =
L∑
l=0

βlBl(x) (2.2.5)

where Bl is the lth basis function.

We can see that expression (2.2.5) has the same form as expression (2.2.1). In fact, we can estimate
the parameters βl using OLS. More precisely, we first apply each basis function to each training
example xi and gather the results in a matrix B (N ×L) where

Bil = Bl(xi) (2.2.6)

Then we can apply OLS using the matrix B in place of the usual matrix X as follows:

β̂ = (B′B)−1By (2.2.7)

Among the different alternatives for the basis functions, there are the families of splines, which are
piecewise-defined smooth polynomials. Splines have a high degree of smoothness at the points
where the polynomial pieces connect, known as knots. For example, a cubic spline is a spline that
has continuous first and second derivatives at the knots. The basis splines (B-splines) are the most
popular notably due to their better numerical properties (Boor, 2001).

The basis expansion will typically increase the number of input variables, for example, with a
polynomial of degree p, the number of variables will increase exponentially with p. In consequence,
when there are too many basis functions, OLS will overfit the estimation of the parameters, which
is a manifestation of the curse of dimensionality (Bellman and Bellman, 1961).

In Section 2.1.3, we have seen that we can add an overfit penalty to the in-sample errors to take
into account the overfitting phenomenon (see expression (2.1.5)). The same idea can be applied to
select the parameters of the linear model by minimizing penalized least squares:

Q(β) = (y −Xβ)′(y −Xβ) +λJ (β) (2.2.8)

where λ is the smoothing parameter and J (β) is a quadratic penalty of the form

J (β) = β′P β (2.2.9)

where P is a penalty matrix.

The smoothing parameter λ controls the degree of penalization. If λ = 0, then expression (2.2.8) is
equivalent to the unpenalized least squares criterion in (2.2.2). Higher values of λ induce a larger
amount of penalty.

As with OLS, the optimal solution can be computed analytically and is given by

β̂ = (X ′X +λP)−1Xy (2.2.10)

Different penalty matrices lead to different methods and different estimates of the parameters β.
For example, P = I is called the ridge penalty where all parameters are evenly shrunken toward
zero (Hoerl and Kennard, 1970).

18

Machine learning strategies for multi-step-ahead
time series forecasting

If we combine the idea of basis expansion in (2.2.5) with regularization in (2.2.8), we can build
very flexible estimators with good generalization property. In particular, in the following, we will
focus on penalized regression splines (P-Splines).

Penalized regression splines (P-Splines)

Penalized regression splines (P-Splines) combine the idea of B-splines with a regularization term
that enforces smoothness by penalizing large differences of the parameters of adjacent knots (Eilers
and Marx, 1996).

With regression splines, after defining B-splines as basis functions, the parameters of the linear
model in (2.2.5) can be estimated by OLS as in (2.2.7), where the matrix B defined in (2.2.6)
replaces the usual matrix X in (2.2.3).

With P-splines, we use the same idea but we add a d-order difference penalty on the parameters
β = (β1, . . . ,βL)′ given by

L∑
l=d+1

(∆dβl)
2, (2.2.11)

where the difference operator ∆d is defined recursively as

∆dβl = ∆(∆d−1βl),

with ∆βl = βl − βl−1 and ∆0βl = βl .

In other words, we minimize a penalized least squares criterion as in (2.2.8) with X = B where B is
defined in (2.2.6), and the matrix P in (2.2.9) is given by

P =D′(d)D(d),

where D(d) is a matrix representation of the difference operator defined in (2.2.11). For example, a
first order difference matrix is given by

D(1) =

−1 1

−1 1
. . .

. . .
−1 1

 ,

while a second order difference is given by

D(2) =

1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

 .

Then, the parameters β can then be computed using expression (2.2.10), as follows

β̂ = (B′B +λP)−1By

P-splines are characterized by a number of parameters that have to be specified: the degree of
the B-spline bases, the number of knots, the order of the difference penalty d and the smoothing
parameter λ.

19

Machine learning strategies for multi-step-ahead
time series forecasting

Cubic B-splines (i.e. of order 3) are the most commonly used B-spline bases since they offer the
best trade-off between flexibility and computational simplicity.

With P-Splines, the knots are typically fixed at quantiles of the input variable xl and we only need
to select the number of knots. In addition, Ruppert (2002) has shown that the number of knots
does not have much effect on the estimation, provided enough knots are used.

The difference order is generally specified to d = 2, that is deviations from linearity are penalized.
Also, when d = 2, the penalty can be seen as a discrete approximation of the smoothing spline
penalty.

The smoothing parameter λ is the main hyperparameter of the P-splines that controls the trade-off
between the fit and the amount of penalty. One can for example use cross-validation to select its
best value. Another approach consists in specifying the degree of freedom for the fit as follows.

As with the (unpenalized) least squares in (2.2.4), we can write the fitted values at the training
inputs as

ŷ = Bβ̂ = B(B′B +λP)−1B︸ ︷︷ ︸
Sλ

y,

where Sλ is known as the smoother matrix, which is also an hat matrix. The degree of freedom can then
be defined as dfλ = tr(Sλ), that is the sum of the diagonal elements of Sλ (Hastie and Tibshirani,
1990). One advantage of this definition is that it allows a more natural way to parametrize the
P-spline estimator. Of course, for a given degree of freedom, there is a corresponding smoothing
parameter λ that can be computed.

In order to consider bivariate interactions, it is possible to extend univariate P-splines to bivariate
P-splines by computing a tensor product of two univariate B-spline bases. To enforce smoothness
as for univariate P-splines, a bivariate penalty matrix can be constructed from separate univariate
difference penalties in order to penalize variations in both directions. For more details on tensor
product basis functions, we refer the reader to Eilers and Marx (2003); Marx and Eilers (2005);
Wood (2006).

2.2.2 Neural networks

The Multi-layer perceptron (MLP), also called neural network, is one of the most successful machine
learning algorithms that allows to model complex nonlinear relationships between a set of input
variables and an output variable.

A neural network is a network of nodes organized in layers including an input layer made up with
the input variables, intermediate layers called hidden layers that contain hidden nodes, and an
output layer with one output variable. In this type of network, information moves from the input
nodes, through the hidden nodes, to the output node.

We consider the standard neural network with one-hidden layer which is given by

m(x) = α0 +
NH∑
j=1

αjg(wTj x
′),

where x′ is the input vector x, augmented with 1, i.e., x′ = (1,xT)T , wj is the weight vector for
the jth hidden node, α0, α1, . . . , αn are the weights for the output node and NH is the number
of hidden nodes. The function g is the output of the hidden node, and is generally given by the
logistic function: g(u) = 1

(1+e−u) .

20

Machine learning strategies for multi-step-ahead
time series forecasting

The number of hidden nodes (NH) controls the complexity of the model. In particular, when
NH = 0, the MLP reduces to the linear model given in expression (2.2.1).

For a given number of hidden nodes, the weights are generally estimated using some specific
optimization procedure, the most popular one being the backprogpagation procedure (Rumelhart,
Hinton, and Williams, 1986). Usually, the weights are chosen to be random values near zero to
begin with, and the backprogpagation procedure updates the weights so that the prediction errors
are minimized.

The error function minimized by neural networks is nonconvex and so can have multiple local
minima. In consequence, the final solution will depend on the value chosen as starting point.
Because of this randomness, neural networks are often trained multiple times using different
random starting values, and the outputs of the different networks are averaged to obtain the final
predictions.

Because the MLP is a heavily parametrized model, it has a high chance of overfitting the data.
In particular, large weights can induce a large variance of the output (Geman, Bienenstock, and
Doursat, 1992). A very effective regularization method, called weight decay, consists in penalizing
large weights by adding a penalty term to the error function. As in ridge regression with linear
models (see Section 2.2.1), the usual penalty is the sum of squared weights and a parameter λ is
used to control the trade off between fitting errors and weight size.

In the learning procedure presented in Section 2.1.4, for the MLP model, we have β =
[α1, . . . ,αn;w1, . . . ,wNH] and ψ = [NH,λ]. Finally, our implementation of the MLP model is based
on the nnet package for R (Venables and Ripley, 2002).

2.2.3 K-Nearest neighbors

The K-Nearest neighbors (KNN) model is a nonlinear and nonparametric model where the predic-
tion for a data point is obtained by averaging the target outputs of the K nearest neighbor points of
the given point (Altman, 1992; Atkeson, Moore, and Schaal, 1997). In other words, the prediction
for the input x is computed as follows

m(x) =
1
K

K∑
k=1

yNN(x,k) (2.2.12)

where yNN(x,k) is the output of the k-th nearest neighbor of the input vector x in the data set.

In the learning procedure presented in Section 2.1.4, for the KNN model we have ψ = K and
because there is no parameters, β = ∅.

The key parameter K has to be selected with care since it is controlling the bias/variance trade-off
of the estimates. A large K will lead to a smoother fit and therefore a lower variance (at the expense
of a higher bias), and vice versa for a small K . Any metric can be used to compute the nearest
neighbors of the input vector x but the most common choice is the standard Euclidean distance.
Despite its simplicity, the KNN model yields good results in practice, and is often used to provide
a benchmark to more complex models such as neural networks.

Instead of computing a simple average in (2.2.12), we can also compute a weighted average to give
more weights to the closer points. In this work, we shall use a weighted KNN model where the
weights are a function of the Euclidean distance between the query point and the neighboring points
(we used the biweight function of Atkeson, Moore, and Schaal, 1997). Finally, our implementation
of the KNN model is based on a modified version of the kknn package for R (Hechenbichler, 2014).

21

Machine learning strategies for multi-step-ahead
time series forecasting

2.2.4 Gradient Boosting

Boosting is a learning algorithm based on the idea of creating an accurate learner by combining
many so-called “weak learners”, i.e. learners that have a high bias/low variance property (Schapire,
1990). At the end of the nineties, Freund and Schapire (1996) and Freund and Schapire (1997)
designed AdaBoost, the well-known classification algorithm based on the property of weak learn-
ability. In AdaBoost, a weight is assigned to each training example which indicates its relative
importance. These weights are used to compute the error of a hypothesis on the training data. At
each iteration, examples are reweighted with larger weights given to instances that are not correctly
classified by the last hypothesis. Thus, learning can focus on those instances that have higher errors
as the process continues.

Schapire, Freund, et al. (1998) have focused on understanding the good performance of voting
algorithms by bounding the generalisation error via the VC dimension and the distribution of
so-called margins. Breiman (1999) states that the VC-type bounds are misleading and was the
first to establish the link between AdaBoost and statistical learning. He shows that AdaBoost
can be seen as an optimization algorithm in function space. An additional breakthrough of
boosting in the statistical community was achieved by Friedman and Hastie (2000) who showed
that AdaBoost can be seen as a forward stagewise additive model, that is a model formed by an
additive combination of weak learners. From a classification algorithm, Boosting has evolved to a
general modeling algorithm that can be interpreted as a functional gradient descent optimization
algorithm (Friedman, 2001).

Since its inception in 1990, Boosting has attracted much attention in the literature due to its
excellent prediction performance in a wide range of applications both in machine learning and
statistics. The reason of its good performance seems to be associated with its resistance to over-
fitting, which is still under investigation (Mease and Wyner, 2008; Mease, 2008). An overview
of the first developments of boosting can be found in Ridgeway (1999). Recent developments of
boosting in the statistical community is given by Bühlmann and Hothorn (2007). Finally, we refer
to Schapire and Freund (2012) for a general overview on boosting.

Gradient boosting models compute the prediction for the input x as follows

m(x) =
J∑
j=0

νl[j](x; β̂),

where l[j](x; β̂) is the base learner estimate at the jth stage with parameters β̂ and ν ∈ [0,1] is a
shrinkage factor. Note that l̂[j](x) will be used as shorthand for l[j](x; β̂).

Gradient boosting models are estimated in a stagewise manner. In this work, we will focus on
gradient boosting models with the quadratic loss, also called L2Boost.

We let m[j](x) denote the estimation at the jth stage, where j = 0,1, . . . , J . The process begins with
m[0](x) = 1

N

∑N
i=1 yi . Then the model is updated using

m[j](x) =m[j−1](x) + νl[j](x; β̂).

Given an estimation m[j−1], each additional term l̂[j](x) is obtained as follows. First, the negative
gradient (which gives the steepest descent direction) is computed as follows

u
j
i = −

1
2∂(yi −m(x))2

∂m(x)

∣∣∣∣∣
m(x)=f̂ [j−1](xi)

= −(yi − f̂ [j−1](xi)),

22

Machine learning strategies for multi-step-ahead
time series forecasting

where i = 1, . . . ,N . Because of the quadratic loss, the pseudo-residuals u[j]
i are simply equal to

residuals from the previous function estimates m[j−1](xi).

After computing the pseudo-residuals, a regression is applied on {(xi ,u
[j]
i)}Ni=1 by the base learner

l(x;β), i.e. the parameters of the base learner are estimated as follows:

β̂ = argmin
β

N∑
i=1

[u[j]
i − l

[j](xi ;β)]2. (2.2.13)

In other terms, l[j](x; β̂) is selected to best predict the residuals from the previous function estimates
m[j−1](x).

Finally, the final estimate is given by

m(x) =m[J](x) =m[0](x) +
J∑
j=1

νl[j](x; β̂) (2.2.14)

where the estimation is continuously improved by an additional component (or boost) νl[j](x; β̂) at
stage j and we can prevent overfitting by limiting the number of components J .

As can be seen from expression (2.2.13), the previously described boosting algorithm estimates
one single base-learner that uses all the variables in x, at each boosting iteration. Bühlmann and
Yu (2003) developed a better algorithm, called component-wise gradient boosting, that includes
automatic base-learners selection. The key difference is that the new algorithm estimates B different
base-learners instead of one single base-learner and selects at each iteration the base-learner with
the largest contribution to the fit. In addition, these base-learners will typically depend on a subset
of variables of the vector x. One advantage of this algorithm is that it can handle high-dimensional
regression problems (Bühlmann, 2006).

Algorithm 1 gives the different steps of the component-wise gradient boosting algorithm, including
a description for each step.

From line (10) in Algorithm 1, we can see that the boosting procedure depends on two hyperpa-
rameters: ν, the shrinkage parameter and J , the number of components (or number of boosting
iterations). The value of ν affects the best value for J , i.e. decreasing the value of ν requires a higher
value for J . Since they can both control the degree of fit, we should ideally find the best value for
both of them by minimising some model selection criterion. However, Friedman (2001) shows that
small values of ν are better in terms of less overfitting of the boosting procedure. Hence, there is
only one hyperparameter remaining for which the best value needs to be selected (Bühlmann and
Yu, 2003).

Several weak learners have been used in the boosting literature, notably stumps (trees with two
terminal nodes) (Friedman, 2001) and smoothing splines (Bühlmann and Yu, 2003). Penalised
regression splines (P-splines) (Eilers and Marx, 1996) have also been considered in Schmid and
Hothorn (2008) as a better alternative to smoothing splines in terms of computational time.

In this work, our implementation of the gradient boosting algorithm will be based on P-splines,
which have been described in Section 2.2.1. P-splines require the selection of two additional
parameters: the number of knots and the smoothing parameter. However, Ruppert (2002) showed
that the number of knots does not have much effect on the estimation provided enough knots are
used. The weakness of the P-spline is measured by its degree of freedom (df). Bühlmann and Yu
(2003) and Schmid and Hothorn (2008) proposed that the smoothing parameter should be set to

23

Machine learning strategies for multi-step-ahead
time series forecasting

Algorithm 1 Component-wise gradient boosting with quadratic loss

D = {(xi , yi)}Ni=1 where (xi , yi) ∈Rd ×R : dataset
{l1(x), . . . , lB(x)}: set of B base-learners
J : number of boosting iterations
0 < ν ≤ 1: shrinkage factor

1: Initialize the function estimates: m[0](x) = 1
N

∑N
i=1 yi

2: for j← 1, . . . , J do
3: Compute the negative gradient of the quadratic loss function evaluated at the function

values of the previous iteration m[j−1](xi):

u
[j]
i = −

1
2∂(yi −m(x))2

∂m(x)

∣∣∣∣∣
m(x)=m[j−1](xi)

= −(yi −m[j−1](xi)) , i = 1, . . . ,N .

4: for b← 1, . . . ,B do
5: Fit the bth base learner with the training set {(xi ,u

[j]
i)}Ni=1, which gives l̂[j]b (x).

6: end for
7: Select the the base-learner l[j]b∗ (x) with the largest contribution to the fit, i.e. the base-learner

that minimizes the sum of squared errors:

b∗ = argmin
b

∑N
i=1(u[j]

i − l̂
[j]
b (xi))2

8: Update the current function estimate by adding the best base-learner estimate of the current
iteration (j) to the function estimate of the previous iteration (j − 1):

m[j](x) =m[j−1](x) + νl̂[j]b∗ (x)
9: end for

10: m(x) =m[0](x) +
∑J
j=1νl̂

[j]
b∗ (x)

give a small value of df (i.e., df ∈ [3,4]), and that this number should be kept fixed in each boosting
iteration.

With univariate P-splines, we have B = d and each base learner depends on one variable. In
particular, the final solution in line (10) can be written as an additive model (Hastie and Tibshirani,
1990). If we consider bivariate P-splines, then B =

(d
2
)

and each base learner depends on a pair of
variables. Kneib, Hothorn, and Tutz (2009) gives an introduction to bivariate P-splines to model
spatial effects in the context of boosting algorithms. In this work, gradient boosting with univariate
and bivariate P-splines will be denoted as BST1 and BST2, respectively. Finally, our implementation
of the gradient boosting algorithms depends on the mboost package for R (Hothorn et al., 2010).

2.3 Time series forecasting

2.3.1 Introduction

In many different areas, we collect observations about some phenomenon or quantity at regular
intervals to form what is called a time series. Predicting future observations of a collected sequence
of historical observations is called time series forecasting. Forecasts are vital since they guide
decisions in many areas of scientific, industrial and economic activity such as in meteorology,
telecommunication and finance.

Depending on the specific application, forecasts can be required for short-term, medium-term and
long-term horizons. Short-term forecasts are the most common required forecasts and include for
example demand forecasting. Long-term forecasts are typically useful for strategic planning where

24

Machine learning strategies for multi-step-ahead
time series forecasting

decisions must be taken for a long-term horizon. Forecasts can also be classified into one-step or
multi-step-ahead forecasts where forecasts are required for the next or multiple future observations,
respectively.

In this work, we will not make a distinction between the different types of forecasts. Instead,
we will consider the general multi-step-ahead forecasting problem defined as follows. Given a
univariate time series {y1, . . . , yT } comprising T observations, the goal is to forecast the next H
observations {yT+1, . . . , yT+H } where H is the forecast horizon.

In order to produce meaningful forecasts, we need to make some assumptions about the underlying
dynamics and the information contained in the observed time series. In fact, if the future is
completely independent on the past observations then there is no hope to produce good forecasts
based on historical observations.

One assumption that is typically assumed is that the time series contains patterns that can be
captured and these patterns are informative about its future. The goal of a forecasting method
is to learn these patterns in order to produce forecasts. Note that forecasts can be produced in
a changing environment as long as there are regularities in the way in which the environment
changes and these regularities will continue into the future.

Some time series are easier to forecast than others. How far and how well we can forecast depends
on the time series at hand. For example, forecasting the electricity load is much easier than
forecasting exchange rates. However, irrespective of the application, the further we want to forecast
the more difficult it is. For example, if the temperature of today is 27◦C, it is unlikely that the
tomorrow’s temperature will be 2◦C notably because of the continuity of physical phenomena. So,
we expect the forecast of tomorrow’s temperature to be relatively accurate. However, if we try to
forecast the temperature for the day in three months, then the possible values are larger and so the
forecast is expected to be poor compared to tomorrow’s temperature. In other words, the further
ahead we forecast, the more difficult it is to be accurate.

2.3.2 Time series decomposition

Time series data can exhibit many different patterns over time, that can be extracted to better
understand the time series or to improve the forecasts. Two types of patterns can be generally
identified in a time series: trend and seasonal.

The trend pattern can be described as a long-term increase or decrease in the level of the time
series. The term trend-cycle is used when the time series exhibit fluctuations that are not of fixed
period (also called a cyclic pattern). In this work, we will use the term “trend”, even though it may
contain a cyclic pattern.

The seasonal pattern can be described as periodic fluctuations influenced by seasonal factors that
are of fixed period.

A time series yt can be decomposed in three different components: a trend-cycle component Trt, a
seasonal component St and a reminder pattern Et that contains unidentified patterns.

The final decomposition can take two forms, either an additive or a multiplicative form. In this
work, we focus on the additive form, where the time series is decomposed as

yt = Trt + St +Et.

Various methods have been proposed in the literature to compute the different components of the
decomposition (Cleveland et al., 1990; Ladiray and Quenneville, 2001). Most of these methods are

25

Machine learning strategies for multi-step-ahead
time series forecasting

based on the classical decomposition, a relatively simple procedure. First, the trend is computed
using moving averages. Second, after computing the detrended series, the seasonal component for
each period is computed by simply averaging the detrended values for that period. Finally, the
reminder term is computed by subtracting the computed trend and seasonal components from the
initial time series.

A very general and robust method called the STL (Seasonal and Trend decomposition using Loess)
decomposition has been developed by Cleveland et al. (1990). STL has many advantages over
the other methods: (i) it can handle any type of seasonality, (ii) the flexibility of the trend and
the seasonal component can be controlled by the user and (iii) it can be robust to outliers. One
limitation of STL is that it can only handle additive decompositions. In this work, we will always
use STL for decomposing time series.

In addition to better understand and extract the patterns of a time series, decomposition can also
be useful for forecasting. In fact, instead of directly forecasting the initial time series, we can
forecast each component separately and then sum the forecasts of each component to obtain the
final forecast (Theodosiou, 2011). One advantage of this approach is that the different components
are expected to be easier to forecast separately.

Given a time series {y1, . . . , yT } and assuming an additive decomposition, the forecasting procedure
using decomposition involves the following steps:

• Decompose the time series {yt} into trend component {Tt}, seasonal component {St} and
reminder term {Et} where yt = Trt + St +Et.

• Compute the deaseasonalized series {A1, . . . ,AT } where At = yt − St = Trt +Et.

• Forecast the deaseasonalized series to obtain {ÂT+1, . . . , ÂT+H }.

• Forecast the seasonal component to obtain {ŜT+1, . . . , ŜT+H }.

• Combine the forecasts of the deaseasonalized series and the seasonal component to obtain
the final forecasts, that is {ÂT+1 + ŜT+1︸ ︷︷ ︸

ŷT+1

, . . . , ÂT+H + ŜT+H︸ ︷︷ ︸
ŷT+H

}.

2.3.3 The statistical forecasting perspective

The observed value yt at time t can be considered as a realization of an underlying random variable.
Similarly, a time series {y1, . . . , yT } can be seen as a finite realization of a stochastic process which
can be described as a family of random variables indexed by time. The term data generating process
(DGP) is also used to refer to the underlying stochastic process that has generated the observed
time series. In practice, the goal is to use the observed time series to infer some properties of the
underlying process (if it exists) that will allow us to produce forecasts for future observations.

In particular, the future observations {yT+1, . . . , yT+H } we want to forecast can be considered as
random variables since they are unknown quantities. Also, we typically produce forecasts based on
some observations, such as some historical data about the quantity we want to forecast. Suppose
we denote all that information as I , then we can define the conditional distribution as

F(yt |It−1),

which represent the distribution of yt given the knowledge of It−1.

26

Machine learning strategies for multi-step-ahead
time series forecasting

A process can be said unpredictable with respect to It−1 if

F(yt |It−1) = F(yt),

which means that the knowledge of It−1 has no influence on the uncertainty of yt. This notion is
similar to the conditional independence of random variables.

Modeling the conditional distribution from a single realization of the process is not an easy task
and is at an early stage in the forecasting literature. Instead we typically try to estimate the first
two moments of this distribution: the conditional mean and the conditional variance. In particular,
we will assume the problem of forecasting consists in estimating the conditional mean defined as

E[yt |xt−1].

The forecast produced when estimating the conditional mean represents the average of the possible
values the random variable yt could take given xt−1.

This is similar to the problem of regression learning defined in Section 2.1.2. One notable difference
however is that the training examples are not independent. The dependence between training
examples marks the fundamental difference between a forecasting problem and a general regression
learning problem.

In this section, we have seen that the time series can be considered as a realization of an underlying
stochastic process, and we can produce forecasts after estimating a forecasting model from the
time series. More generally, we will refer to a forecasting method for any procedure that computes
forecasts from historical observations and this procedure does not necessarily need to assume
an underlying model. This distinction is similar to the distinction between the two statistical
modeling cultures, i.e. data modeling versus algorithmic modeling (Breiman, 2001).

2.3.4 Autoregressive models

In Section 2.1.2, we have seen that the regression model estimates the function f defined in (2.1.1)
that maps a vector x of input variables to an output variable y, where each variable can represent
different quantities.

With time series data, the input vector and the output variable represent the same quantity at
different time instant (also called lags), and so the model is called an autoregressive model (or
process).

An autoregressive process has the form

yt = f (yt−1, . . . , yt−d︸ ︷︷ ︸
xt−1

) + εt, (2.3.1)

where the state at time t is represented as a function of the d immediate past values plus a noise
term for time t. The process is defined by a function f , a lag order d and a noise term εt, which is a
stochastic iid process with E[εt] = 0 and E[εt] = σ2.

Several classes of processes arise depending on the type of function f . For example, in the forecast-
ing literature, the function f is often assumed linear and gives rise to the (linear) autoregressive
(AR) process defined as

yt = φ0 +φ1yt−1 + · · ·+φdyt−d + εt (2.3.2)

where the state at time t is represented as a linear combination of the d immediate past values
plus a noise term for time t. With linear models, a weaker condition for the noise term εt is used

27

Machine learning strategies for multi-step-ahead
time series forecasting

where it is assumed that the noise is an uncorrelated noise (or white noise) process instead of an
independent noise process, as in (2.3.1).

Another popular class of models is the moving average (MA) models that use past forecast errors
as lagged variables instead of past values of the forecast variable. These models are particularly
useful to define a general class of models called the autoregressive moving average (ARMA) models
that include both an autoregression and a moving average model. The ARMA models can be better
alternatives to either pure AR models or pure MA models since they can model a time series with a
more parsimonious model that would induce better parameter estimates. In this work, we will not
consider MA models and will focus on autoregressive models. One reason for this choice is that it
is easier to consider different nonparametric and nonlinear models with autoregressive models.
For more details about ARMA models, we refer the reader to Holan, Lund, and Davis (2010).

Another class of models called nonlinear autoregressive (NAR) models is included in the general
form given in expression (2.3.1) when the function f is nonlinear.

In particular, if the function f is piecewise linear, this leads to the threshold autoregressive (TAR)
model (Tong and Lim, 1980). The idea is to have a different AR model in different regions. A better
alternative to the TAR model is the Smooth Threshold autoregressive (STAR) model (Haggan and
Ozaki, 1981; Teräsvirta, 1994) which allows a smooth transition from one AR model to the other.
Tong (2011) provides a recent selective review of the development of the threshold model over the
past 30 years.

The function f can also be an additive function (Stone, 1985; Hastie and Tibshirani, 1990), which
gives rise to an additive autoregressive model defined as

yt = f0 + f1(yt−1) + · · ·+ fd(yt−d) + εt.

Finally, the function f can be any learning model such as a neural network model.

A useful property of a stochastic process is the stationarity property which requires the statistical
properties of the process to be stable through time. Stationarity is an important property since it
implies some regularities in the stochastic process and thus also in the time series realizations of
this process. There are two types of stationarity, namely weak stationarity and strict stationarity.

A process {yt} is weak stationary (or second-order stationary) if the first and second moments are
finite and do not change over time. More formally, a process {yt} is weak stationary if E[yt] is a
constant that does not depend on time t, and Cov(yt , yt+τ) does not depend on t but only on τ .

A process {yt} is strictly stationary if (y1, . . . , yn) and (y1+τ , . . . , yn+τ) have the same joint distribution
for any integer n ≥ 1 and any integer τ .

Checking whether a linear model is stationary is relatively straightforward. However, it is much
harder to show that a nonlinear model is strictly stationary.

A large part of the forecasting theory is based on stationary models. However, in practice, time
series are often non-stationary since they exhibit some persistent increase or decrease over time.

For some time series, called difference-stationary, it is possible to make it stationary by applying a
transformation called differencing, which consists in computing the differences between consecutive
observations (Hyndman and Athanasopoulos, 2014). Being able to make the time series stationary
is important if we want to take advantage of the theory of stationary models.

28

Machine learning strategies for multi-step-ahead
time series forecasting

The first-order differencing of a series provides a new series that represents the change between
consecutive observations in the original series and is defined as

y′t = yt − yt−1.

Similarly, the second-order differencing is the differencing applied to an already first-order differ-
enced series. In practice, first-order differencing will already transform the original series into a
stationary series. Sometimes, a second-order differencing is required but it is very rare to need to
go beyond second-order differences.

For a given time series, a visual inspection can help us to decide whether the time series is stationary
or if differencing is needed. Except for some obvious cases, such as a clear trend, deciding if the
time series needs differencing is not an easy task. In addition, the number of time series to process
can be huge and therefore the visual inspection can be unfeasible in practice. To reduce the
subjectivity in the differencing process and to make it more automatic, one can use a unit root test
to determine if differencing is required (Baltagi, 2001).

Unit root tests are hypothesis tests of stationarity that can be used to determine whether differencing
is required. Different unit root tests are based on different assumptions and have different null-
hypotheses. Two popular test are the Augmented Dickey-Fuller (ADF) test and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test.

The null-hypothesis for the ADF test is that the series is non-stationary while for the KPSS test it is
reversed, and the null-hypothesis is that the series is stationary. Both tests can be used to decide
whether differencing is required but the KPSS test is often used to complement the ADF test.

In this work, we have focused on autoregressive models but there are other methods that can be
used for forecasting, including exponential smoothing methods (Gardnerjr, 2006). These methods
are not based on an autoregression and produce forecasts by taking a weighted average of past
observations with the weights decaying exponentially as the observations get older. Autoregressive
models and exponential smoothing methods are the most popular forecasting methods.

It is worth noting that a large class of forecasting models can be represented in a state space
form including exponential smoothing and autoregressive models (Durbin and Koopman, 2001;
Hyndman, Koehler, et al., 2008). There are many advantages in writing forecasting methods in a
state space form, including the possibility of studying their properties in a common mathematical
framework and the easier software implementation that can include a large spectra of models.

We will not go into more details about the other existing forecasting methods, but we refer the
interested reader to the following key references: Hyndman and Athanasopoulos (2014); Teräsvirta,
Tjostheim, and Granger (2010); Fan and Yao (2003); Brockwell and Davis (2002); Chatfield (2000).

2.3.5 Autoregressive model selection

Let us assume a time series {z1, . . . , zT } with T observations is sampled from the process given in
(2.3.1), and we need to estimate the function f and the lag order d.

In the forecasting literature, the linear model given in expression (2.2.1) has often been adopted to
estimate the function f . In particular, the parameters are often estimated by OLS (see (2.2.3)) and
the lag order d is often selected by model-dependent penalties such as AIC or BIC (see Section 2.1.3).
If the function f is effectively linear as in expression (2.3.2), and under some conditions, OLS
enjoys a number of properties such as unbiasedness and consistency (Wooldridge, 2012).

29

Machine learning strategies for multi-step-ahead
time series forecasting

In this work, we have considered the different learning algorithms presented in Section 2.2 to
estimate the function f , and the lag order and the hyperparameters have been selected using the
learning procedure presented in Section 2.1.4.

For a given lag order p and forecast horizon h, the time series {z1, . . . , zT } can be embedded into a
dataset D made up of N input-output pairs as follows:

D = {(xi , yi) : xi = [zi , . . . , zp+i−1] and yi = zp+i+h−1}
N=T−p−h+1
i=1 .

To select the lag order d and the hyperparameters, we can use different validation methods ss
explained in Section 2.1.3. For example, we can adopt an holdout approach where the data set D
is split into a training set Dtrain = {(xi , yi)}Mi=1 and a validation set Dval = {(xi , yi)}Ni=M+1 for a given
value of M.

In Section 2.1.3, we have seen that cross-validation is a better alternative to the holdout approach
since it involves multiple splitting. However, because the examples from a time series are not
independent, we cannot use the standard cross-validation (see expression (2.1.8)) to select the lag
order and the hyperparameters since it can lead to a biased model selection.

For example, Hart and Wehrly (1986) and Opsomer, Wang, and Yang (2001) show that there is
overfitting when cross-validation is used to select the bandwidth in kernel regression. Modifications
of cross-validation have been proposed where the main idea has been to withhold some of the
neighbors of the current validation point to eliminate the dependence effect (see for example
Chu and J Marron, 1991; Burman, Chow, and Nolan, 1994; Hart, 1994; Racine, 2000; Carmack
et al., 2009; Brabanter and Brabanter, 2011). However, it is not easy to find the correct number of
neighbors to withhold in real-world applications. On the other hand, Burman and Nolan (1992)
showed that cross-validation can be applied when the errors follow a stationary Markov process
in a specific framework, and Bergmeir and Benítez (2012) did not find practical consequences of
correlated errors on cross-validation in a large experimental study.

An alternative to the standard cross-validation is the time series cross-validation approach (also
called forecast evaluation with a rolling origin (Tashman, 2000)) where the first part of the
(embedded) dataset D is used as training set and the remaining part is used as validation/rolling
set. In particular, the model is fitted using the training set and the errors are computed using the
validation set. We repeat this procedure multiple times, and each time one example moves from
the validation set to the training set. The procedure can be summarized as follows:

1. Split the data set D into training set Dtrain = {(xi , yi)}
j
i=1 and validation set Dval = {(xi , yi)}Ni=j+1.

2. Fit the model using Dtrain, then compute the predictions ŷi and the corresponding errors
(ei = yi − ŷi) for all the validation examples (i.e. i = j + 1, . . . ,N).

3. Compute the MSE from ej+1, . . . , eN .

4. Repeat steps 1−3 for j =M,. . . ,N −1 where M is the minimum number of examples required
to fit a model. The final cross-validation error is the average of the errors computed in step 3
for the different runs.

Instead of repeating the steps 1−3 for j =M,. . . ,N −1, it is also possible to increase the training set
Dtrain by several values at a time. In other words, we can run step 4 for j =M,M+k,M+2k, . . . ,N −1
for k , 1. This can be useful for large data sets to reduce the computational time of the procedure.

30

Machine learning strategies for multi-step-ahead
time series forecasting

2.3.6 Evaluating forecasts accuracy

We often need to compare the forecast accuracy of different forecasting methods on several data
sets, notably in forecasting competitions. Many different accuracy measures have been proposed to
evaluate the performance of forecasting methods. Hyndman and Koehler (2006) give a complete
overview and compare different forecast accuracy measures, while Tashman (2000) provides a
review of out-of-sample tests for comparing forecasting methods. In the following, we present the
two accuracy measures used in the real-world experiments of this work to evaluate the performance
of forecasting methods.

Let us denote by {ŷT+1, . . . , ŷT+H } the forecasts and by {yT+1, . . . , yT+H } the true future observations
of the time series {y1, . . . , yT }. The forecast error at horizon h is defined as eT+h = ŷT+h − yT+h where
h ∈ {1, . . . ,H}. The two commonly used error measures that are based on eT+h are the absolute errors
|eT+h| and the squared errors e2

T+h. However, because the error eT+h is on the same scale as the data,
it cannot be used to compare series that are on different scales.

There are mainly two alternatives for scale-independent error measures: percentage and scaled
errors. Let us assume we have produced forecasts for M different time series and let us define the
forecast error for the mth time series at horizon h as emT+h = ŷmT+h − y

m
T+h where m ∈ {1, . . . ,M} and

h ∈ {1, . . . ,H}. We will present one error measure from each type.

One example of the percentage error is the symmetric mean absolute percentage error (sMAPE)
which is defined as

sMAPEh = mean(sAPEmh), (2.3.3)

where

sAPEmh = 200 ∗
|emT+h|

(ŷmT+h + ymT+h)
.

To avoid sMAPE takes negative values, we can define it with absolute values in the denominator,
that is

sAPEmh = 200 ∗
|emT+h|

(|ŷmT+h|+ |y
m
T+h|)

.

One example of the scaled error is the mean absolute scaled error (MASE) proposed by Hyndman
and Koehler (2006). It is defined as

MASEh = mean(ASEmh), (2.3.4)

where

ASEh =
|emT+h|

1
T−1

∑T
t=2 |yt − yt−1|

.

31

Chapter 3

An overview of strategies for multi-step-

ahead time series forecasting

3.1 Preamble

Multi-step-ahead time series forecasting has been mainly studied in econometrics and statistics. In
the last two decades, there have been few studies involving algorithms and methodologies from
machine learning. However, the lack of communication between these different fields made it
difficult to have a broad overview of the different developments in this area. This chapter addresses
this issue by providing an overview of the research on multi-step-ahead forecasting undertaken in
the different fields.

When facing a multi-step-ahead forecasting problem, we typically have a choice between the
recursive and the direct forecasting strategy. With the recursive strategy, forecasts are generated
using a one-step-ahead model, applied iteratively for the desired number of steps. With the
direct strategy, an horizon-specific model is estimated and forecasts are computed directly by the
estimated model for each forecast horizon. We describe the two strategies in Section 3.3, including
how the different models are selected.

A large part of the literature has focused on comparing these two strategies and investigating under
which conditions one strategy is better than the other. We provide an overview of the different
comparisons in Section 3.4 for both linear and nonlinear models.

In Section 3.5, we present the alternative strategies that have been proposed, either by improving
recursive or direct forecasts, or by developing hybrid strategies that combine properties of both
recursive and direct strategies.

In Section 3.6, we review the few studies that considered machine learning algorithms for time
series modeling and forecasting. Finally, we provide a brief summary with concluding remarks in
Section 3.7.

3.2 Multi-step forecasting

Given a univariate time series {y1, . . . , yT } comprising T observations, we want to forecast the H
next observations of the time series, {yT+1, . . . , yT+H }.

Time series of different fields or applications can have different resolutions (e.g. yearly, monthly,
daily, hourly, etc), and that could lead to different time series lengths T . Also, depending on the
required horizon H , forecasts can be typically classified into short, medium or long term forecasts.

32

Machine learning strategies for multi-step-ahead
time series forecasting

Typically, the further in the future we attempt to forecast the harder it can be because of the larger
uncertainty.

We will assume the time series {y1, . . . , yT } is a realization of an autoregressive process of the form

yt = f (xt−1) + εt with xt−1 = [yt−1, . . . , yt−d]′ , (3.2.1)

which is specified by a function f , a lag order (or number of lagged variables) d and a noise term
{εt}, which is a stochastic iid noise process with E[εt] = 0 and E[ε2

t] = σ2.

Different forms or values of these three components can produce time series with very different
characteristics. The autoregressive process in (3.2.1) is also called the data generating process
(DGP) for the time series {y1, . . . , yT }. In particular, time series generated by different DGPs can
have very different forecastability properties.

In practice, we do not have access to the true DGP (if it exists). The only information we have is
one time series realization from that DGP. The goal is to produce the best forecasts (according to
an accuracy measure) based on this time series realization.

We will consider the mean squared error (MSE) as forecast error measure. Let us denote g(xt; θ̂T ;h)
the h-step ahead forecast from input xt using the set of parameters θ̂T , that have been estimated
from the time series YT = {y1, . . . , yT }. Then, the MSE at horizon h is defined as

MSEh(xt) = Eε,YT

[
(yt+h − g(xt; θ̂T ;h))2 | xt

]
,

It can be shown that the optimal h-step ahead forecast, i.e. the forecast that has the minimum
MSE at horizon h, is the conditional expectation given by µt+h|t = E[yt+h|xt] (see, for example,
Clements and Hendry, 1998, p.44). For the reminder of the thesis, we will assume the goal of
multi-step-ahead forecasting is to estimate µt+h|t for h = 1, . . . ,H using one time series realization
{y1, . . . , yT }.

For one-step-ahead forecasts, that is h = 1, we have the expression µt+1|t = f (xt). So, the problem of
forecasting reduces to the estimation of the function f and the lag order d, given in expression
(3.2.1).

For multi-step forecasts, that is h > 1, the problem is more difficult and does not necessarily reduces
to the estimation of the function f and the lag order d. In fact, to produce multi-step-ahead
forecasts, we need a forecasting strategy which typically involves estimating one or more models
which are not necessarily of the same form as f and may not have the same lag order d as the
function f .

3.3 The recursive and direct forecasting strategies

Multi-step-ahead forecasting can be handled recursively, where a single time series model is
estimated and each forecast is computed using previous forecasts. Another approach builds a
separate time series model for each forecasting horizon, and forecasts are computed directly by the
estimated model (Chevillon, 2007; Sorjamaa, Hao, Reyhani, et al., 2007).

The recursive strategy centers on building a model of the same form as (3.2.1), aiming to minimize
the one-step-ahead forecast error variance. In others words, it estimates a model of the form

yt =m(zt−1;φ) + et , (3.3.1)

33

Machine learning strategies for multi-step-ahead
time series forecasting

where zt−1 = [yt−1, . . . , yt−p]′, p is an estimate of the true lag order d (i.e. p = d̂), φ = [ψ,β] is
the model parameters where ψ is a set of hyperparameters and β is a set of parameters, and
et = f (xt−1)−m(zt−1;φ) + εt is the forecast error of the model m with E[et] = 0.

The lag order and the hyperparameters are estimated by minimizing one-step-ahead errors as
follows

(p, ψ̂) = argmin
p,ψ

∑
(zt−1,yt)∈Dval

[yt −m(zt−1;ψ, β̂)]2, (3.3.2)

where Dval is the validation set and β̂ is estimated using the training set Dtrain
1, as described in

Section 2.3.5.

The recursive strategy ensures that the fitted modelmmatches the assumed data generating process
f as closely as possible. However, the minimization of one-step forecast errors does not necessarily
guarantee the minimum for h-step ahead errors.

Multi-step forecasts are obtained dynamically by repeatedly iterating the model and by plugging
in the missing future values with their respective forecasts. More precisely, the forecasts µ̂T+h|T are
computed as follows

m(h)(zT ; φ̂) =

m(zT ; φ̂) if h = 1,

m(m(h−1)(zT ; φ̂), . . . ,m(1)(zT ; φ̂), yT , . . . , yT−p+h; φ̂) if 1 < h ≤ p,
m(m(h−1)(zT ; φ̂), . . . ,m(h−p)(zT ; φ̂); φ̂) if h > p.

(3.3.3)

With linear models, the forecasts of the recursive strategy are also sometimes called “iterated
multi-step” (IMS) forecasts (e.g., Chevillon, 2007). When used with parametric nonlinear models,
the recursive strategy is called the deterministic method (see, for example, Clements and Hendry,
1998, p.94) or the naive method (see, for example, Teräsvirta, Tjostheim, and Granger, 2010, p.348).
Recursive forecasts can also be computed using the exact, the Monte Carlo and the bootstrap
methods, as will be explained in Section 3.4.2. In this thesis, “recursive forecasts" will refer to the
recursive strategy defined in expression (3.3.3).

A variation on the recursive strategy is to use a different set of parameters for each forecasting
horizon:

(ph, ψ̂h) = argmin
p,ψ

∑
(zt−h,yt)∈Dval,h

[yt −m(h)(rt−h;ψ, β̂h)]2, (3.3.4)

where Dval,h is the validation set for horizon h, β̂h is estimated using Dtrain,h, the training set
for horizon h, and m(h) is defined in (3.3.3). In other words, we select the parameters β̂h, the
hyperparameters ψ̂h and the lag order ph that when used recursively h times minimize h-step-
ahead errors. In this variant, forecasts are still obtained recursively but the model parameters are
allowed to change with the horizon.

When the learning algorithm is nonparametric (i.e. β = ∅), expression (3.3.4) can be easily com-
puted, but if the learning algorithm depends on some parameters β, the parametric identification
requires a nonlinear optimization problem.

This variant has also been considered with linear models (i.e. when ψ = ∅), where the parameters
(or coefficients) are estimated so that they minimize h-step-ahead errors. For example, Bhansali
(2002) discusses this variant of the recursive strategy in Section 9.5 (see expression 9.24) to select
the parameters of an AR(1) model by minimizing two-step-ahead errors.

1To simplify the notations for all the strategies, we will consider a holdout approach but in practice we can adopt a
time series cross-validation approach as described in Section 2.3.5.

34

Machine learning strategies for multi-step-ahead
time series forecasting

The direct strategy tailors the forecasting model directly to the forecast horizon. In other words,
different forecasting models are used for each forecast horizon:

yt =mh(rt−h;γh) + et,h, (3.3.5)

where, in contrast to the recursive strategy, mh is a direct model, rt−h = [yt−h, . . . , yt−h−ph]
′, ph is the

lag order for horizon h, γh = [ψh,βh] is the model parameters for horizon h where ψh is a set of
hyperparameters and βh is a set of parameters, et,h is the forecast error of the model mh at horizon
h and h = 1, . . . ,H .

For each model mh, the lag order and the hyperparameters are estimated by minimizing direct
h-step-ahead errors as follows:

(ph, ψ̂h) = argmin
p,ψ

∑
(rt−h,yt)∈Dval,h

[yt −mh(rt−h;ψ, β̂h)]2. (3.3.6)

where Dval,h is the validation set for horizon h and β̂h is estimated using Dtrain,h, the training set for
horizon h.

In contrast to the recursive strategy, the direct strategy does not match the model used for forecast-
ing with the assumed model, given in expression (3.2.1). However, the direct strategy minimizes
the h-step ahead forecast errors instead of one-step errors as the recursive strategy. Also, because
the direct strategy estimates H models rather than one model as the recursive strategy, it involves a
heavier computational load than the recursive strategy.

Multi-step forecasts are obtained for each horizon from the corresponding model, µ̂T+h|T =
mh(rT ; γ̂h). This is sometimes also known as “direct multi-step” (DMS) forecasting (e.g., Chevillon,
2007).

Throughout this thesis, to highlight the difference between recursive and direct forecasts, we will
use φ to denote the model parameters of the recursive strategy and γ for the direct strategy. It is
worth noting that when ψ = ∅, for example with the LIN model (see Section 2.2.1), then φ and γ
will only contain the parameters β. Therefore, in both expressions (3.3.2) and (3.3.6), we will only
select the lag order p. When there is no parameters, i.e. β = ∅, for example with the KNN model
(see Section 2.2.3), then φ and γ will not contain the parameters β, and therefore, there will be no
parametric identification step.

3.4 Recursive or direct forecasts?

When we want to generate multi-step-ahead forecasts, we have to decide whether to use the
recursive or direct forecasting strategy.

If we ignore the estimation variance, i.e. we have infinite amount of data (T = ∞), and if we
know the function f and the true lag order d in expression (3.2.1), then the recursive strategy and
the direct strategy would be equivalent when f is linear, but not when f is nonlinear (Fan and
Yao, 2003). Because of minimizing the one-step-ahead prediction errors, when f is nonlinear the
recursive strategy is asymptotically biased (Brown and Mariano, 1984; Lin and Granger, 1994)
while, under appropriate conditions, the direct strategy achieves the optimal mean squared error
(Atiya et al., 1999).

In practice, because multi-step forecasts require the estimation of one or multiple models from a
finite-sample time series, as can be seen in Eq. (3.3.1) and (3.3.5), the choice between recursive
and direct multi-step forecasts involves a trade-off between bias and estimation variance of the

35

Machine learning strategies for multi-step-ahead
time series forecasting

forecasts. Which component, the bias or the estimation variance, contributes most to the mean
squared forecast error depends on many interacting factors including the model complexity, the
(unknown) underlying DGP, the time series length and the forecast horizon. Therefore, the question
of which multi-step strategy is best is an empirical one.

Although the performance of recursive and direct forecasts depends on many factors, a number of
studies have compared the two strategies in specific settings under certain conditions. In particular,
a large part of the econometrics literature has focused on linear models. Some work involved
nonlinear models but were limited compared to linear models. In the following two sections, we
provide an overview of the literature for both linear and nonlinear models.

3.4.1 Linear models

The importance of multi-step forecasting in econometrics has contributed to the large number of
studies that compare the recursive and direct strategies. A large part of the literature often involves
comparing recursive and direct linear forecasts for some specific DGP with a specific estimation
method, and discussing the conditions under which one or the other is better. A summary of the
findings is given by Bhansali (1999) and Chevillon (2007).

The common practice has been to assume that the postulated model is the true model (i.e., that
m and f are asymptotically equivalent). In that case, generating multi-step forecasts reduces
to estimate the model parameters and use it recursively. Multi-step recursive forecasts is often
advocated in standard time series and econometrics textbooks. One reason is that often time series
models are estimated and producing multi-step forecasts from these models is straightforward
with the recursive strategy.

However, important contributions to the theoretical literature on recursive and direct forecasting
have been done when misspecified models (i.e., that m and f are not asymptotically equivalent)
have been considered, as explained below.

The idea of “direct” forecasting can be at least traced back to Cox (1961) who considered the
estimation of an exponentially weighted moving average model and an AR model when the true
DGP is either AR or ARMA. The author found that multi-step forecasts can be made more robust if
the smoothing parameter is allowed to change with the forecast horizon.

What is meant by “direct” is that the parameters are selected by minimizing h-step ahead errors as
follows

β̂ = argmin
β

∑
t

[yt −m(h)(zt−h;β)]2.

where m(h) is defined in (3.3.3).

However, this is one way to apply “direct” multi-step estimation where the parameters of the
postulated model are computed by minimizing the implied h-step-ahead errors instead of the
traditional one-step-ahead errors. The other approach consists in having a different model at each
horizon, which is generally called the direct strategy. Lin and Tsay (1996) and Bhansali (1999) have
pointed out these ways to proceed with “direct” multi-step estimation.

Findley (1983) proposed to mach the estimation and forecasting criterion functions by showing that
the optimal values of the parameters of misspecified AR models depend on the forecast horizon.

Stoica and Nehorai (1989) extended the work on multi-step estimation of Findley (1983) for
ARMA models. The authors proposed various algorithms for the multi-step parameter estimation
that involves a nonlinear optimization problem. Also, the authors confirmed the importance of

36

Machine learning strategies for multi-step-ahead
time series forecasting

model misspecification as a justification for multi-step estimation and have found that under-
parametrization of the model can benefit multi-step estimation.

Weiss (1991) showed that, with misspecified models, it is asymptotically optimal to minimize the
sum of squared in-sample multi-step forecast errors when the forecast evaluation criterion is the
expected sum of squared multi-step forecast errors.

Multi-step estimation for ARMA processes was considered in Tiao and Xu (1993) and Clements
and Hendry (1996). Tiao and Xu (1993) showed that more efficient forecasts can be obtained with
multi-step estimation when the model is misspecified. Clements and Hendry (1996) performed an
analysis of multi-step estimation for stationary and integrated processes.

Findley, Pötscher, and Wei (2004), Ing (2003) and Ing (2004) considered very general settings.
Findley, Pötscher, and Wei (2004) provides an estimation theory for fitting misspecified models by
multi-step error minimization. Under mild conditions, Ing (2003) shows for stationary cases that
the MSE of the recursive forecasts is asymptotically greater than direct forecasts. Ing (2004) shows
that correctly identifying the true model order for autoregressive processes does not guarantee
obtaining the optimal forecasts in a MSE sense.

Chevillon and Hendry (2005) provide a useful review of some of the literature comparing recursive
and direct forecasting strategies, and explore in detail the differences between the strategies for
vector autoregressive (VAR) models applied to stationary and difference-stationary time series.
They show that for these models, when f , m and mh are all assumed multivariate linear, and under
various mis-specification conditions, then the recursive MSE is greater than the direct MSE.

Chevillon and Hendry (2005), Chevillon (2008) and Proietti (2011) have considered misspecified
(AR)IMA processes. Some researchers - such as Tiao and Tsay (1994), Bhansali (1996); Bhansali
(1997), Brodsky and Hurvich (1999) and Bhansali and Kokoszka (2002) - have focused on long
memory processes. A frequency domain approach for multi-step estimation has also been proposed
in Haywood and Wilson (1997) and McElroy and Wildi (2013).

Despite the practical importance of multi-step forecasting, there have been limited empirical stud-
ies comparing recursive and direct strategies with linear models. Kang (2003) studied univariate
AR models on nine U.S. economic time series and found mixed results by concluding that the
direct strategy “may or may not improve forecast accuracy” compared to the recursive strategy.
Marcellino, Stock, and Watson (2006) compared the two strategies in a “large-scale experiment"
using data on 170 U.S. macroeconomic time series and found strong evidence in favor of recursive
forecasts. Proietti (2011) finds there are no significant gains in predictive accuracy arising from the
direct strategy when dealing with the level of economic time series in real terms and confirms the
findings of Marcellino, Stock, and Watson (2006). Pesaran, Pick, and Timmermann (2011) use the
same data set as Marcellino, Stock, and Watson (2006) and found that the recursive forecasts are
better than direct forecasts with short time series and for long forecast horizons.

In summary, with linear models, the theoretical literature tends to conclude that if the model is
correctly specified, the recursive strategy benefit from more efficient parameter estimates, while
the direct strategy is more robust to model misspecification. However, empirical studies often
found superior performance of recursive forecasts, especially for long horizons. One explanation is
that with short time series, the efficiency of the recursive forecasts are more important than the
robustness of direct forecasts.

3.4.2 Nonlinear models

In contrast to the large number of studies comparing recursive and direct forecasts with linear
models, there have been less work with nonlinear models. More generally, nonlinear forecasting is

37

Machine learning strategies for multi-step-ahead
time series forecasting

still in its infancy compared to linear forecasting notably due the additional complexity and the
heavier computational load when analyzing nonlinear forecasting models (Gooijer and Hyndman,
2006).

As with the linear model, nonlinear direct forecasts are obtained by regressing the h-step ahead
variable with past lagged variables. However, there are four alternatives to compute recursive
forecasts: the traditional recursive strategy (also called naive or deterministic), the exact, the Monte
Carlo and the bootstrap methods (see, for example, Teräsvirta, Tjostheim, and Granger, 2010,
p.348).

Nonlinear direct forecasts have been considered in Stock and Watson (1999) where the authors
compared linear and nonlinear models for forecasting macroeconomic time series. Nonlinear
recursive forecasts with the bootstrap methods have been considered in Teräsvirta, Dijk, and
Medeiros (2005) also for forecasting macroeconomic time series.

Brown and Mariano (1984) considered nonlinear parametric models for f and show that the bias
of the recursive strategy with large samples is O(1), i.e. there is asymptotic bias. The authors
also showed that the exact and bootstrap forecasts have bias O(1/T) where T is the length of
the time series. Lin and Granger (1994) extended the results of Brown and Mariano (1984) to
non-parametric models. They also compared the different recursive approaches including the
direct strategy in a simulation study with different DGPs. The authors concluded that the kernel
bootstrap approach is a better alternative to the recursive strategy.

Atiya et al. (1999) have also compared the MSE of both strategies with general nonlinear models for
two-step ahead forecasting and show that the MSE of the direct strategy is asymptotically smaller
than the MSE of the recursive strategy.

Compared to the recursive strategy, the exact, the Monte Carlo and the bootstrap methods require
good knowledge of the function f and/or the distribution of the noise term εt (Teräsvirta, Tjostheim,
and Granger, 2010). In practice, the (naive) recursive strategy is often used due to its simplicity
both in implementation and computational resources.

As with the linear models, the number of empirical studies comparing recursive and direct forecasts
with nonlinear models is also limited.

Atiya et al. (1999) found direct forecasts to perform better than recursive forecasts with neural
networks applied to the problem of river flow forecasting. Kline (2004) found empirical evidence
in favor of the direct strategy compared to the recursive strategy on a subset of the quarterly time
series from the M3 competition (see Appendix A.1.1).

Sorjamaa, Hao, Reyhani, et al. (2007) compared recursive and direct forecasts with the KNN model
for electric load forecasting, and found better forecasts with the direct strategy. They also pointed
out the heavier computational time of the direct strategy when input selection is applied.

Hamzaçebi, Akay, and Kutay (2009) compared recursive and direct forecasts with neural networks
on the six time series of Box and Jenkins (1976), and found superior performance of the direct
strategy.

Kock and Teräsvirta (2011) applied a small simulation study to compare recursive and direct
forecasts where the DGP is a simple neural network model. They found recursive forecasts to be
explosive with a neural network that include a linear unit, as explained by Teräsvirta, Dijk, and
Medeiros (2005). Since, in that case, recursive and direct forecasts cannot be compared for long
horizons, they applied an “insanity filter” as explained by Swanson (1995). They found that the
recursive strategy is superior to the direct strategy for sufficiently long horizons.

38

Machine learning strategies for multi-step-ahead
time series forecasting

Finally, in addition to the forecasting strategy, there have also been an interest in determining
whether nonlinear models yield better forecasts than linear models, especially for economic time
series. The answer to that question has been negative in many cases. One argument put forward is
that economic time series are often weakly nonlinear which does not justify the use of nonlinear
models since linear models already provide a good approximation. Also, because nonlinear
behavior seems not to occur very frequently, there is no benefit in using nonlinear models. Finally,
another argument is that even if the time series is nonlinear, overfitting can prevent nonlinear
models to perform better than linear ones, particularly with short time series. We refer the reader
to Teräsvirta (2006) for more details about the comparison between linear and nonlinear models.

In summary, the recursive strategy with nonlinear models is known to be asymptotically biased.
Alternatives, such as the exact, the Monte Carlo and the bootstrap methods have been proposed but
these methods require additional knowledge either about the function f or the noise distribution.
The direct strategy is often preferred over the recursive strategy with nonlinear models. In
particular, empirical studies often found superior performance of the direct strategy compared to
the recursive strategy. Many studies also found that linear models perform better than nonlinear
models with real-world time series, that are typically short and weakly nonlinear.

3.5 Alternative forecasting strategies

In addition to comparing recursive and direct strategies, alternative strategies have been proposed
to improve multi-step forecasts or decrease the computational time, for example by changing the
way the parameters are selected and the way the forecasts are generated.

3.5.1 Improving recursive forecasts

For the recursive strategy, the main improvement has been to consider h-step ahead forecast errors
instead of the usual one-step-ahead errors.

With linear models, we have seen in Section 3.4.1 that the loss of forecasting performance when
using an incorrect model with parameters tuned for multi-step forecasts is expected to be smaller
than parameters tuned for one-step-ahead forecasts.

With neural networks, h-step ahead criteria have been considered with recurrent neural networks
(Rumelhart, Hinton, and Williams, 1986; Werbos, 1988; Elman, 1990) using backpropagation
through time (Werbos, 1990). Atiya et al. (1999) found superior performance for recursive forecasts
with recurrent neural networks compared to the usual one-step-ahead neural network for the
problem of river flow forecasting.

With local models, McNames (1998) proposed to find the nearest trajectory segments, rather than
the conventional nearest neighbors. The method has been successfully used in the K.U. Leuven
time series competition (Suykens and Vandewalle, 2000) for forecasting (noisy-free) chaotic time
series (McNames, Suykens, and Vandewalle, 1999). More recently, Wichard (2010) considered an
ensemble of models including nearest trajectory models to forecasting the time series from the
NN5 forecasting competition (see Section A.1.2).

Bontempi, Birattari, and Bersini (1999) proposed an extension of the Predicted REsidual Sum
of Squares (PRESS) leave-one-out statistic (Allen, 1974), called iterated PRESS, to select local
models for multi-step forecasting. The authors found superior performance of the iterated PRESS
compared to the non-iterated approach on three (noise-free) chaotic time series, from the Santa
Fe (Weigend and Gershenfeld, 1994) and the KU Leuven competitions (Suykens and Vandewalle,
2000).

39

Machine learning strategies for multi-step-ahead
time series forecasting

3.5.2 Improving direct forecasts

For the direct strategy, the focus has been on how to exploit the fact that the errors for different
models are serially correlated.

Lee and Billings (2003) suggested to estimate the multi-step forecast errors and include them as
inputs for the next model. The goal is to obtain a smaller covariance of the parameter estimates
which is directly related to the forecast accuracy. With both linear and nonlinear simulated time
series, the authors show that the proposed strategy outperforms both the recursive and direct
strategies.

Chen, Yang, and Hafner (2004) proposed a multi-stage direct strategy with nonparametric smooth-
ing techniques. The rationale is to exploit substantial information about the conditional mean
function that is contained in the intermediate horizons. In particular, the authors proposed to use
a smoother version of the output variable for horizon h by replacing it with predictions generated
by the estimated function. Under various conditions, the authors showed that the new strategy has
smaller asymptotic MSE than the traditional direct strategy.

Pesaran, Pick, and Timmermann (2011) proposed to view the H regressions of the direct strategy
as a set of seemingly unrelated regression equations (Fiebig, 2001) that create non-overlapping
blocks from the data which are spaced apart by the length of the forecast horizon. The authors also
proposed modified versions of the AIC that take into account the autocorrelated residuals in the
forecast models. Monte Carlo experiments show the gain in efficiency with the proposed method.

Kline (2004) and Franses and Legerstee (2009) have considered the problem of jointly estimating
all the direct models. Kline (2004) considered multi-output neural networks where each output
node corresponds to one forecast horizon. After learning the multi-output neural network with
backpropagation, direct forecasts can be generated in “one shot". The authors found superior
performance of the multi-output approach compared to the direct approach on the quarterly time
series from the M3 competition (See appendix A.1.1).

Franses and Legerstee (2009) applied the Partial Least Squares (PLS) regression method (Wold,
2006) to jointly estimate the direct models. The authors compared the proposed method with the
recursive and direct strategies on the quarterly index of US industrial production, for the period
January 1945 to April 2000. They found mixed results with better forecasts for the recursive and
the PLS methods compared to the direct strategy.

3.5.3 Hybrid forecasts

There have been also some research work that developed hybrid strategies between the recursive
and the direct strategy.

Zhang and Hutchinson (1994) proposed to mix the recursive and direct strategies by having a
different model for each horizon as with the direct strategy, but to include the forecasts from all
the previous horizons (i.e. h− 1 to 1) into the inputs of the model for horizon h .

In other words, instead of estimating the parameters as in (3.3.6), they are estimated as follows

(ph, ψ̂h) = argmin
p,ψ

∑
t

[
yt − [mh(m̂h−1, . . . , m̂1,rt−h;ψ, β̂h)]

]2
.

where m̂h is shorthand for mh(rt−h; γ̂h) with γ̂h = [ψ̂h, β̂h]. Then the forecasts are obtained for each
horizon from the corresponding model, that is µ̂T+h|T =mh(m̂h−1, . . . , m̂1,rT ; γ̂h).

40

Machine learning strategies for multi-step-ahead
time series forecasting

The authors considered neural networks with backpropagation for the models mh. Because the
number of lagged variables grow linearly with the horizon, this strategy suffers from the curse of
dimensionality. So the authors used this strategy only for the first few horizons and considered
traditional direct models for subsequent horizons. The authors did not compare their strategy with
the recursive and direct strategies.

Sorjamaa and Lendasse (2006) considered a similar strategy with the KNN model including a
variable selection method to deal with the increasing input vector. The authors found that the
strategy produces smaller errors than both the recursive and direct strategies for forecasting a time
series from the Santa Fe competition (Weigend and Gershenfeld, 1994) and another electric load
time series.

Zhang, Zhou, et al. (2013) proposed another hybrid strategy, called MSVR, that estimates the first
S (S < H) direct models and use them recursively to generate the H required forecasts. In other
words, we learn the models as in (3.3.5) but only for horizons h = 1, . . . ,S rather than h = 1, . . . ,H .

Assuming H = n× S (for simplicity), the MSVR strategy will produce n blocks of S forecasts by
using n times the S direct models. The first block containing the first S forecasts is computed with
the direct strategy and the remaining (n− 1) blocks are computed using the intermediate forecasts
as input for the S models. So, the MSVR strategy does not change the way the model are estimated
but only the way the forecasts are computed from direct models. The authors focused on support
vector regression models but the strategy can be applied to any models.

The major advantage of the MSVR strategy is the reduced computational time when S << H . The
major disadvantage is the possible loss of forecast accuracy due to the forecasts used as inputs for
the direct models. In addition, The MSVR strategy require the selection of an additional parameter
S that controls the trade-off between recursive and direct forecasts.

3.6 Time series forecasting with machine learning

In the previous sections, we have presented research that focuses on multi-step forecasting strate-
gies, i.e. how to generate multi-step forecasts. In the machine learning literature, there have been
also some research works on time series modeling and forecasting using machine learning models
where the forecasting strategies is not the main focus.

The literature on machine learning for time series forecasting is rather sparse. The book by Palit
and Popovic (2005) entitled Computational intelligence in time series forecasting is the only reference
related to that subject. However, the authors only considered the neural network model and the
book’s focus is on computational intelligence methods based on fuzzy logic (Zadeh, 1975).

More recently, Ahmed et al. (2010) presented an empirical comparison of machine learning models
for time series forecasting. Models that have been considered include neural networks, kernel
regression, K-nearest neighbors, regression trees, support vector machines and Gaussian processes.
The authors have compared these different models on the time series from the M3 competition
data. However, the study has been limited to the problem of one-step-ahead forecasting.

The main machine learning model that has been considered in the forecasting literature is the
neural network model. An overview of forecasting with neural network is given by Zhang, Patuwo,
and Michael Y. (1998) and Zhang (2012). Crone, Hibon, and Nikolopoulos (2011) gives empirical
evidence of the neural network ability to deal with complex time series data, including short and
seasonal time series. Other references on the subject include Zhang and Qi (2005); Medeiros,
Teräsvirta, and Rech (2006); Zhang and Kline (2007); Kock and Teräsvirta (2011). Recently, a
particular type of neural networks called Extreme Learning Machine (Huang, Zhu, and Siew, 2006)

41

Machine learning strategies for multi-step-ahead
time series forecasting

has also been considered for time series forecasting by Grigorievskiy et al. (2014). Finally, the top
computational intelligence entries for the NN3 and NN5 competitions have been obtained with
neural network models (Adeodato et al., 2009; Andrawis, Atiya, and El-Shishiny, 2011).

Kim (2003) considered support vector machines (SVM) for financial time series forecasting with a
focus on stock price index forecasting. The author shows that SVM is a promising alternative to
neural networks and case-based reasoning. Thissen (2003) used SVM for time series forecasting
with applications in the field of Chemometrics. The authors compared SVM with both ARMA mod-
els and recurrent neural networks. Crone (2006) has applied an exhaustive empirical comparison
of support vector machines and neural networks with traditional statistical methods. The least
squares support vector machines (LS-SVM) (Suykens and Vandewalle, 1999; Suykens, Van Gestel,
et al., 2002) has also been considered for forecasting problems (Van Gestel et al., 2001; Spinoza and
Falck, 2008; Rubio et al., 2010). A survey of time series forecasting with support vector machines
is provided by Sapankevych and Sankar (2009).

Nearest neighbors and more general local models have also been successfully applied in time series
forecasting. The development of nearest neighbor models for time series forecasting has started
with nonlinear systems (Casdagli, 1989). An extension of the nearest neighbor model, called
the nearest neighbor trajectory model (McNames, 1998) has been proposed to improve forecast
accuracy. Bontempi, Birattari, and Bersini (1999) and Sorjamaa, Hao, and Lendasse (2005) also
considered local models for forecasting chaotic time series. Recently, nearest neighbors models
have been used in combination with other machine learning models to forecast the time series of the
NN5 forecasting competition (Wichard, 2010). A discussion about forecasting with nonparametric
models can be found in Teräsvirta, Tjostheim, and Granger, 2010, Chap. 14.3.

A number of other machine learning algorithms have received little attention in the forecasting
literature. Regression trees have been considered by Tran, Yang, and Tan (2009) for forecasting the
operating conditions of machines. Self-organizing maps (SOM) (Kohonen, Schroeder, and Huang,
2001) have been considered by Simon et al. (2004); Simon et al. (2005); Simon, Lee, et al. (2007) for
various forecasting tasks.

Gaussian processes have been considered by Girard, Rasmussen, and Candela (2003); Brahim-
Belhouari and Bermak (2004). An overview of Bayesian time series models can be found in Barber,
Cemgil, and Chiappa (2011).

Boosting has only recently been considered in the forecasting literature. See for example Assaad,
Boné, and Cardot (2008); Audrino and Bühlmann (2009); Buchen and Wohlrabe (2011); Robinzonov,
Tutz, and Hothorn (2012). Some research with bagging can be found in Inoue and Kilian (2008);
Cordeiro (2009).

In his article “Mining the past to determine the future: Problems and possibilities”, Dr. Hand
provides an interesting discussion about “data mining” applied to forecasting. Price (2009)
and Crone (2009a) provide useful comments about the paper, and Hand (2009b) concludes the
discussion.

3.7 Summary and concluding remarks

This chapter has presented an overview of the literature that has considered multi-step forecasting
strategies with both linear and nonlinear models, including machine learning models.

The majority of those studies have focused on comparing recursive and direct forecasts generated
with linear models. Less work has been done with nonlinear models, notably due the additional

42

Machine learning strategies for multi-step-ahead
time series forecasting

complexity and the heavier computational load. In particular, except neural networks (Zhang,
2012), multi-step forecasts generated with machine learning models have received little attention.

Alternative forecasting strategies have been proposed, including variants of recursive forecasts
(McNames, 1998; Bontempi, Birattari, and Bersini, 1999; Atiya et al., 1999), variants of direct
forecasts (Lee and Billings, 2003; Chen, Yang, and Hafner, 2004; Franses and Legerstee, 2009),
and hybrid strategies (Zhang and Hutchinson, 1994; Sorjamaa and Lendasse, 2006; Zhang, Zhou,
et al., 2013). However, these alternative strategies have received little attention in the literature,
notably due to the additional complexity or the limited increase in performance compared to the
traditional recursive and direct strategies.

The findings about the comparison between the recursive and the direct strategy can be summarized
as follows.

With linear models, the theoretical literature tends to conclude that model misspecification plays
an important role in the relative performance between the recursive and direct strategy (Chevillon,
2007). If the model is correctly specified, the recursive strategy benefit from more efficient
parameter estimates, while the direct strategy is more robust to model misspecification. However,
empirical studies often found superior performance of recursive forecasts compared to direct
forecasts, especially for long horizons (Marcellino, Stock, and Watson, 2006; Pesaran, Pick, and
Timmermann, 2011).

With nonlinear models, recursive forecasts are known to be asymptotically biased since they do not
consider the innovation terms (Brown and Mariano, 1984; Lin and Granger, 1994). Alternatives,
such as the exact, the Monte Carlo and the bootstrap methods have been proposed but these
methods require additional knowledge either about the function f or the noise distribution
(Teräsvirta, Tjostheim, and Granger, 2010). The direct strategy is often preferred over the recursive
strategy since it avoids the accumulation of errors. In particular, empirical studies often found
superior performance of the direct strategy compared to the recursive strategy (Atiya et al., 1999;
Kline, 2004; Sorjamaa, Hao, Reyhani, et al., 2007).

When comparing linear with nonlinear models, it has been found that nonlinear models have poorer
performance than their linear counterparts, especially with economic time series. Arguments put
forward include the weak nonlinearity of the time series, the rare occurrence of nonlinear features
and the overfitting with short time series (Stock and Watson, 1999; Teräsvirta, 2006; Teräsvirta,
Tjostheim, and Granger, 2010).

There are several limitations to the comparisons that have been performed in the literature. First,
all studies have considered the scenario where both the model and the DGP are linear or nonlinear.
In particular, a study with the scenario where the model is linear and the DGP is nonlinear (and
vice versa) does not seem to be available yet. Such study would be very valuable to study the
behavior of recursive and direct forecasts when the model is more complex or too simple compared
to the DGP.

Second, many studies have focused on nonlinear parametric models but there have been very
limited studies involving machine learning algorithms. Among the limited studies that have
considered machine learning algorithms, many have focused on the neural network model and/or
to the problem of one-step-ahead forecasting.

Finally, the majority of the studies have often included only a limited number of models and time
series in their comparisons. Also, many studies have considered (noisy-free) chaotic time series
that do not reflect the type of time series we encounter in real-world forecasting applications.

We address these different issues in the next chapter with an in-depth bias and variance study of
the recursive and direct strategies using different machine learning algorithms for both linear and

43

Machine learning strategies for multi-step-ahead
time series forecasting

nonlinear DGPs. Our study will consider different scenarios depending on whether the model and
the DGP are linear or nonlinear. Also, we will investigate the role of the time series length and the
forecast horizon in the performance of the recursive and direct strategies.

44

Part II

Contributions

45

Chapter 4

Bias and variance analysis for multi-

step forecasting

This chapter is partly based on the following publication: S Ben Taieb and AF Atiya (2014). “A bias
and variance analysis for multi-step time series forecasting.” Submitted to IEEE Transactions on
Neural Networks and Learning Systems (under revision).

4.1 Introduction

In the previous section, we have seen that a large part of the literature has often compared the
recursive and direct strategies for some specific DGPs with specific estimation methods, and
discussing the conditions under which one or the other is better. In particular, many of the studies
have mainly focused on the linear setting, i.e. where both the model and the DGP are linear
(Chevillon, 2007). There have been few studies involving nonlinear or machine learning models
(Atiya et al., 1999; Kline, 2004; Sorjamaa, Hao, Reyhani, et al., 2007; Kock and Teräsvirta, 2011),
notably due to the analytical challenges and the heavier computational load.

Most empirical studies have focused on specific forecasting problems with either limited data or
very short forecast horizons. Also, the few in-depth studies that have considered time series fore-
casting with machine learning models have been limited to the case of one-step-ahead forecasting
(Berardi and Zhang, 2003; Ahmed et al., 2010). Furthermore, the studies have often compared the
recursive and direct strategies based on overall accuracy measures such as mean squared error.
Although these measures reflect the general forecasting performance, they do not allow to separate
the different sources of errors, which is essential to gain a better understanding of the different
strategies and to provide guidance for how to improve forecast accuracy.

One step towards achieving this goal has been taken by the development of a number of forecast-
error taxonomies to understand the different sources of forecast errors for econometric models:
see for example Clements and Hendry (1998), Hendry (2000), Clements and Hendry (2006) and
Hendry and Mizon (2013). Although these taxonomies allow to reveal major sources of errors
for econometric models, they do not allow to understand the behavior of different strategies with
different learning algorithms in a real-world setting with limited data.

In this chapter, we address these issues by decomposing the multi-step mean squared forecast errors
of the recursive and direct strategies into the so-called bias and variance components. The bias
represents the consistent offset of the forecasts, away from the optimal forecasts, and the variance
represents the variation of the forecasts around their mean. The bias and variance decomposition

46

Machine learning strategies for multi-step-ahead
time series forecasting

is a very useful tool for analyzing the source of errors of an estimator (Geman, Bienenstock, and
Doursat, 1992).

A theoretical bias and variance analysis for the general case of h-step ahead forecasts with machine
learning models is not an easy task, notably because of the large number of potential factors that
could affect the two components over the forecast horizon. In consequence, our bias and variance
analysis will be decomposed into two parts. In the first part, we will apply a theoretical analysis
for the case of two-step ahead forecasts to simplify the derivations. We extend the work of Atiya
et al. (1999) who only considered the bias component in their analysis. In the second part, we
consider the general case of h-step ahead forecasts by using Monte Carlo simulations to effectively
compute the bias and variance components for the different strategies over the forecast horizon. In
particular, we will study the behavior of the recursive and direct strategies with different learning
models and different time series length on different DGPs.

To the best of our knowledge, this study is the first to apply a bias and variance analysis for multi-
step forecasts with different machine learning models. Berardi and Zhang (2003) also conducted a
bias and variance study for time series forecasting. However, there are many distinctive differences
between their study and ours. First, we consider the problem of multi-step-ahead forecasting
instead of one-step-ahead forecasting, which is a fundamental difference. Second, they have
focused on neural networks while we consider various machine learning models (including neural
networks). Finally, our focus is not on the learning model but on the forecasting strategy, that is
the way we generate multi-step forecasts.

As a result of the bias and variance analysis, we will be able to give more insight about which
component contributes more to degraded forecast accuracy of the recursive and direct strategies
over the forecast horizon. Also, the observations made about the recursive and direct strategies in
this chapter will guide the development of new forecasting strategies in subsequent chapters.

In the next section, we derive the decomposition of the multi-step mean squared forecast error
into the bias and variance components. In Section 4.3, we present the general methodology for
our bias and variance analysis, including the bias and variance estimation. Finally, we apply
our methodology in Section 4.4 to compare the recursive and direct strategies. Note that the
methodology developed in this chapter will also be used in Chapters 5 and 6 to compare the new
strategies we propose.

4.2 Mean squared multi-step forecast error decomposition

Let YT = {y1, . . . , yT }, a time series comprising T observations, denotes a realization of a stationary
autoregressive process of the form

yt = f (xt−1) + εt with xt−1 = [yt−1, . . . , yt−d]′ , (4.2.1)

where {εt} is a stochastic iid noise process with εt ∼N (0,σ2).

Given a realization YT = {y1, . . . , yT }, we denote g(xt; θ̂T ;h), the h-step ahead forecasts of a given
strategy for the input xt. For each realization, a lag order p and a set of parameters θ̂T are estimated,
and could possibly be different from one realization to the other. In particular, the estimated lag
order p could possibly be different from the “real” lag order d defined in (4.2.1).

Similarly to the bias and variance decomposition given in expression (2.1.4), we can decompose
the conditional mean squared forecast error (MSFE or MSE)1 of a given strategy for the input xt at

1In this work we will use the terms MSE and MSFE interchangeably.

47

Machine learning strategies for multi-step-ahead
time series forecasting

horizon h as follows

MSEh(xt)

= Eε,YT

[(
yt+h − g(xt; θ̂T ;h)

)2
| xt

]
= Eε

[(
yt+h −µt+h|t

)2
| xt

]
︸ ︷︷ ︸

Noise variance Nh(xt)

+EYT

[(
g(xt; θ̂T ;h)−EYT

[
g(xt; θ̂T ;h)

])2
| xt

]
︸ ︷︷ ︸

Estimation variance Vh(xt)︸ ︷︷ ︸
Forecast variance Nh(xt)+Vh(xt)

+
(
µt+h|t −EYT

[
g(xt; θ̂T ;h)

])2︸ ︷︷ ︸
Squared bias Bh(xt)

(4.2.2)

where Ex and E[·|x] denote the expectation over x and the expectation conditional on x, respectively,
and µt+h|t = E[yt+h|xt] is the conditional mean.

The unconditional MSE can be computed by integrating over the input xt as follows

MSEh (4.2.3)

= Ext [MSEh(xt)]

= Ext ,ε

[
(yt+h −µt+h|t)2 | xt

]
︸ ︷︷ ︸

Noise variance Nh

+Ext ,YT

[
(g(xt; θ̂T ;h)−EYT

[
g(xt; θ̂T ;h)

]
)2 | xt

]
︸ ︷︷ ︸

Estimation variance Vh︸ ︷︷ ︸
Forecast variance Nh+Vh

+Ext

[
(µt+h|t −EYT

[
g(xt; θ̂T ;h)

]
)2
]

︸ ︷︷ ︸
Squared bias Bh

(4.2.4)

We can see in (4.2.4) that the MSE of the forecasts at horizon h can be decomposed into three
different components, the noise variance Nh, the estimation variance Vh and the (squared) bias Bh.
In the following, we will simplify the terms by referring to the noise variance with noise and to the
estimation variance with variance. It is worth noting that this decomposition is similar to the bias
and variance decomposition given in expression (2.1.4).

The noise component Nh is the irreducible error that can only be attained by the optimal forecasts,
that is the conditional mean µt+h|t. In fact, if g(xt; θ̂T ;h) = µt+h|t, we can easily see that MSEh =Nh.
Also, Nh does not depend on the forecasting strategy but only on the DGP. In practice, that is with
a finite sample time series, it is impossible for the forecasts to be equal to µt+h|t. Instead, we have
an estimate of µt+h|t which is prone to bias and variance.

The variance component, Vh, relates to the stability of the forecasts built on different time series
sampled from the same DGP and represents the variation of the forecast around its mean. The bias
component, Bh, represents the consistent offset of the average forecast EYT

[
g(xt; θ̂T ;h)

]
, away from

the optimal forecast, that is the conditional mean µt+h|t.

Factors that can affect the bias and variance components include notably the model complexity and
the time series length T . A complex model will tend to have a low bias, as it is powerful enough
to be able to produce any shape of the fit. On the other hand, a simple model will be less flexible
and will produce large bias. Concerning the variance, complex models will tend to be much more
volatile, because they are more sensitive to the data and the random terms. Simple models, on the
other hand, have less sensitivity, because they have less parameters and hence less “knobs” that
can be used to tune any solution.

The ideal configuration is to have both a low bias and a low variance. However, this ideal config-
uration is never achievable in practice as decreasing the bias will increase the variance and vice

48

Machine learning strategies for multi-step-ahead
time series forecasting

versa. Instead, it is important to obtain forecasts with a good trade-off between bias and variance to
achieve a smaller MSE, as stated by the so-called bias and variance trade-off (Geman, Bienenstock,
and Doursat, 1992). In particular, different forecasting strategies will generate forecasts with
different bias and variance components, some achieving a better bias and variance trade-off than
others.

4.2.1 Further decompositions

The bias and variance components can be further decomposed to illustrate other factors affecting
the bias and variance trade-off.

Let us consider the case where the forecasts g(xt; θ̂T ;h) can be written as a sum of two quantities,
that is g(xt; θ̂T ;h) = g1(xt; θ̂1;T ;h) + g2(xt; θ̂2;T ;h). For example, if the forecasts g represent the
average of forecasts generated by two different models, g1 (g2) will represent the forecasts from the
first (second) model divided by two.

In that case, the total variance Vh in (4.2.4) can be further decomposed into subcomponents as
follows

Vh = Ext ,YT

[
(g(xt; θ̂T ;h)−EYT

[
g(xt; θ̂T ;h)

]
)2 | xt

]
(4.2.5)

= Ext ,YT
[
(g1(xt; θ̂1;T ;h)− g1(xt;θ1;T ;h))2 | xt

]
︸ ︷︷ ︸

V1;h

+Ext ,YT
[
(g2(xt; θ̂2;T ;h)− g2(xt;θ2;T ;h))2 | xt

]
︸ ︷︷ ︸

V2;h

+ 2Ext ,YT
[
(g1(xt; θ̂1;T ;h)− g1(xt;θ1;T ;h))(g2(xt; θ̂2;T ;h)− g2(xt;θ2;T ;h)) | xt

]
︸ ︷︷ ︸

COVh

,

where V1;h is the variance of g1(xt; θ̂1;T ;h), V2;h is the variance of g2(xt; θ̂2;T ;h) and COVh is the
covariance of g1(xt; θ̂1;T ;h) and g2(xt; θ̂2;T ;h). This is also known as the variance-covariance de-
composition (Ueda and Nakano, 1996) and can easily be generalized to an arbitrary number of
models.

The bias term Bh in (4.2.4) can also be further decomposed into subcomponents as follows

Bh = Ext

[(
µt+h|t −EYT

[
g(xt; θ̂T ;h)

])2
]

= Ext

µt+h|t − g(xt;θ

∗;h)︸ ︷︷ ︸
A

+g(xt;θ
∗;h)−EYT

[
g(xt; θ̂T ;h)

]
︸ ︷︷ ︸

B

2 .

The A term represents the discrepancy between the conditional mean and the best potential of the
model family we consider. For example, consider that µt+h|t is nonlinear, while we consider a linear
forecasting model, then g(xt;θ∗;h) is the linear forecast that provides the best approximation of the
nonlinear function. In such a case the A term is a measure of the limitation of the model family, not
taking into account the learning algorithm. The B term represents the error due to using a specific
learning algorithm that estimate the parameters using a time series limited to T observations. For
example, even if µt+h|t can be correctly estimated with g(xt;θ∗;h) (the A term cancels), the B term
will still remain if the learning algorithm is not able to obtain the best parameters, i.e. if θT , θ∗.
Recall that EYT

[
g(xt; θ̂T ;h)

]
= EYT

[
g(xt; θ̂T ;h)

]
.

49

Machine learning strategies for multi-step-ahead
time series forecasting

4.3 Methodology

We present our methodology to compare different forecasting strategies from the perspective of
the bias and variance components of their respective mean squared forecast errors.

In the previous section, we have seen that the bias and variance components depend on a number
of interacting factors including the model complexity, the underlying DGP, the time series length
and the forecast horizon. Therefore, a theoretical analysis for the general case of h-steps ahead
forecasting that takes into account all these factors is not an easy task.

Consequently, we will limit our theoretical analysis to the case of two-steps ahead forecasts to
simplify the derivations, as in Atiya et al. (1999). We will also consider the general case of h-step-
ahead forecasts by using Monte Carlo simulations to effectively estimate the bias and variance
components.

Because the underlying DGP, the learning model and their discrepancy play an important role in
the bias and variance components, we will consider different scenarios depending on whether the
DGP or the learning model are linear or nonlinear. So, we will end up with four different scenarios:
(A) a linear model with a linear DGP, (B) a linear model with a nonlinear DGP, (C) a nonlinear
model with a linear DGP, and (D) a nonlinear model with a nonlinear DGP.

The scenario A, where both the model and the DGP are linear, has received much attention from
the forecasting and econometrics literature, as explained in Section 3.4.1. For this scenario, we
will consider both a well-specified and a misspecified linear model where the misspecification will
come from omitted lagged variables.

The scenario B, where the model is linear and the DGP is nonlinear, will allow us to analyze the
performance of the strategies when the class of model is limited and does not include the true
nonlinear DGP. This scenario is particularly useful since, in practice, linear models are widely used
while we expect real-world phenomena to behave nonlinearly.

The scenario C, where the model is nonlinear and the DGP is linear, will give us some insight about
the cost of extending the class of models beyond the class of the true DGP. For example, using
complex machine learning models when the DGP is linear.

The scenario D, where both the model and the DGP are nonlinear, allows us to compare the
strategies when everything is nonlinear.

In the next section, we give more details about our theoretical analysis for two-step-ahead forecast-
ing, while Section 4.3.2 presents the general case of h-step ahead forecasting.

4.3.1 Theoretical analysis for two-step ahead forecasts

Recall the observed time series are assumed to be generated from the autoregressive process given
in (4.2.1). We want to analyze the bias and variance components B2(xt) and V2(xt) of the two-step
ahead forecast errors for a given forecasting strategy. More precisely, we want to compute for
different forecasting strategies the sum of the bias and variance components at horizon h = 2, given
by

B2(xt) +V2(xt) (4.3.1)

= (µt+2|t − g(xt;θT ;2))2

+EYT

[
(g(xt; θ̂T ;2)− g(xt;θT ;2))2 | xt

]
,

where B2(xt) and V2(xt) are defined in expression (4.2.2).

50

Machine learning strategies for multi-step-ahead
time series forecasting

In order to compute expression (4.3.1), we need to compute the conditional expectation µt+2|t for
the process defined in (4.2.1). Aditionally, we need to obtain an expression for the two-step ahead
forecasts g(xt; θ̂T ;2) of each strategy.

We compute the conditional expectation µt+2|t = E[yt+2|xt] as in Atiya et al. (1999). First we
compute yt+2 using the Taylor series approximation and keep up to second-order terms. This yields
the following expression:

yt+2 = f (f (xt) + εt+1, yt , . . . , yt−d+2) + εt+2

≈ f (f (xt), yt , . . . , yt−d+2) + εt+1fx1
+ 1

2 (εt+1)2fx1x1
+ εt+2,

where the function f is computed at point [f (xt) + εt+1, yt , . . . , yt−d+2)] and the Taylor series approx-
imation is computed around the point [f (xt), yt , . . . , yt−d+2)], fx1

and fx1x1
are the first and second

derivatives of f with respect to its first argument, respectively.

The conditional expectation µt+2|t is then given as

µt+2|t = E[yt+2|xt] ≈ f (f (xt), yt , . . . , yt−d+2) + 1
2σ

2fx1x1
. (4.3.2)

The previous expression is valid for the autoregressive process defined in (4.2.1) with a possibly
nonlinear function f . However, if the function f is linear and is defined as

f (yt−1, . . . , yt−d) = ϕ0 +
d∑
j=1

ϕjyt−j , (4.3.3)

where ϕj are the coefficients of the linear combination, then the DGP given in (4.2.1) becomes

yt = ϕ0 +ϕ1yt−1 + · · ·+ϕdyt−d + εt. (4.3.4)

Since fx1x1
= 0, the expression (4.3.2) for the conditional expectation at horizon h = 2 reduces to

µt+2|t = f (f (xt), yt , . . . , yt−d+2).

and using expression (4.3.3), can be rewritten as

µt+2|t = (ϕ0 +ϕ1ϕ0) + (ϕ2
1 +ϕ2)yt + · · ·+ (ϕ1ϕd−1 +ϕd)yt−d+2 + (ϕ1ϕd)yt−d+1. (4.3.5)

For the expression of g(xt; θ̂T ;2), we will model the forecasts of each strategy as a sum of three terms:
the true function value we are trying to estimate, which is the conditional mean µt+2|t = E[yt+2|xt],
an offset term denoted by δ(zt;θ) and a variability term denoted by η(zt;θ)εη , where η(zt;θ) is a
deterministic factor giving the standard deviation of the term, and εη ∼N (0,1).

The offset term δ(zt;θ) is the discrepancy from the conditional mean µt+2|t arising notably from
(i) the lack of flexibility of the considered forecasting model (i.e. the model, with its parameters
θ, is not powerful enough to reconstruct µt+2|t accurately), (ii) potential missing variables in the
inputs (zt not equal to xt), and (iii) an inadequate estimation algorithm for the parameters θ (i.e.
even if the model is powerful, the training algorithm may fall short of finding the right parameters).

The variability term η(zt;θ)εη represents the variability of the forecasts, and it arises notably due
to (i) the finite-sampledness of the time series YT = {y1, . . . , yT } used to estimate θ, (ii) the number of
input variables in zt potentially including redundant or meaningless variables, and (iii) the chosen
model complexity that might make it too flexible.

51

Machine learning strategies for multi-step-ahead
time series forecasting

Finally, since we have computed the conditional expectation of the autoregressive process defined
in (4.2.1), we can now compute the noise component N2(xt) , given in (4.2.4), as follows

N2(xt) = Eε

[
(yt+2 −µt+2|t)

2
]

≈ Eε

[(
εt+1fx1

+ 1
2ε

2
t+1fx1x1

+ εt+2 − 1
2σ

2fx1x1

)2
]

= σ2[1 + f 2
x1

] + 1
2σ

4f 2
x1x1

. (4.3.6)

where we used the fact that E[ε3] = 0 and E[ε4] = 3σ4 for the standard normal distribution.

We can see in (4.3.6) that the noise component does not depend on the forecasting strategy, but
only on the DGP. One can also observe that the noise term is larger than N1(xt) = σ2, the noise
term at horizon h = 1 and becomes larger for strongly nonlinear DGPs (because, then |fx1x1

| will be
larger).

For the linear DGP defined in (4.3.4), since fx1
= fyt−1

= ϕ1 and f 2
x1x1

= 0, expression (4.3.6) for the
noise component at horizon h = 2 reduces to

N2(xt) = σ2[1 +ϕ2
1].

We refer to the Proposition 3.4 in Fan and Yao (2003) for the noise component of h-step ahead
forecasts.

4.3.2 Monte Carlo simulations for h-step ahead forecasts

As a complement to the theoretical analysis for two-step ahead forecasts, we will consider Monte
Carlo simulations to perform a bias and variance analysis for the general case of h-step ahead
forecasts. In particular, it will allow us to compare the bias and variance components of different
forecasting strategies over the forecast horizon for various DGPs, learning models and time series
lengths.

Data generating processes

In the simulation study, we will consider three different autoregressive processes where one is linear
and the two others are nonlinear. Simulated time series of the different processes are available in
Appendix B.

The first process is a linear stationary autoregressive (AR) process given by

yt = 1.32yt−1 − 0.52yt−2 − 0.16yt−3 + 0.18yt−4 − 0.26yt−5 + 0.19yt−6 + εt , (4.3.7)

where εt ∼N (0,1). This process exhibits cyclic behavior and was selected by fitting an AR(6) model
to the famous annual sunspot series. Because it is a linear process, the variance of εt simply scales
the resulting series. Consequently, we set the error variance to one, without loss of generality.

The second process is the Smooth Transition AutoRegressive (STAR) process given by

yt = 0.3yt−1 + 0.6yt−2 + (0.1− 0.9yt−1 + 0.8yt−2) [1 + exp{(−10yt−1)}]−1 + εt ,

where exp is the exponential function and εt ∼ N (0,0.12). We set the error variance to a value
which allows enough predictability to obtain meaningful results.

This process has been considered by Berardi and Zhang (2003) in a bias and variance study for
one-step-ahead forecasting with neural network models. Several other simulation studies have

52

Machine learning strategies for multi-step-ahead
time series forecasting

used the STAR process for the purposes of model selection, model evaluation as well as model
comparison. See Teräsvirta, Tjostheim, and Granger (2010), Teräsvirta and Anderson (1992), Tong
and Lim (1980) and Tong (1995) for some examples as well as related theoretical background and
applications.

The third process is a nonlinear autoregressive (NAR) process given by

yt = −0.17 + 0.85yt−1 + 0.14yt−2 − 0.31yt−3 + 0.08yt−7 + 12.80 G1(yt−1) + 2.44 G2(yt−1) + εt

with

G1(yt−1) = (1 + exp{−0.46(0.29yt−1 − 0.87yt−2 + 0.40yt−7 − 6.68)})−1,

G2(yt−1) = (1 + exp{−1.17× 103(0.83yt−1 − 0.53yt−2 − 0.18yt−7 + 0.38)})−1

where εt ∼N (0,1).

Medeiros, Teräsvirta, and Rech (2006) built this process by fitting an artificial neural network with
two hidden units to the annual sunspot series. In Kock and Teräsvirta (2011), this process has been
used to compare different forecasting methods in a nonlinear setting.

Bias and variance estimation

The different components of the MSE decomposition given in (4.2.3), namely the noise variance Nh,
the bias Bh and the variance Vh, can be estimated by replacing expectations with averages over a
large number of samples as follows.

For a given DGP, we generate L independent time series Y (i) = {y1, . . . , yT }, i ∈ {1, . . . ,L}, each
composed of T observations using different randomly generated numbers for the noise terms.
These generated time series represent samples of the DGP. Note that we discarded the first three
hundred simulated values for each simulated series to stabilize the time series, as suggested by
Law and Kelton (2000).

To measure the bias and variance components, we use an independent time series {u1, . . . ,uR} from
the same DGP for testing purposes. We represent this independent testing time series by a set of
input/output pairs {(xj ,yj)}

R−(d+H)
j=1 where xj is a sequence of d consecutive observations that will

yield the lagged input variables and the vector yj comprises the next H observations that need to
be forecasted, i.e. xj = [uj , . . . ,uj+d−1] and yj = [uj+d , . . . ,uj+d+H−1].

Let g(xj ;θY (i) ;h) denote the forecast of a given strategy for the input xj at horizon h using dataset
Y (i) and let yj(h) denote the hth element of the vector yj , then the MSE at horizon h, given in
expression (4.2.3), can be estimated as follows

�MSEh =
1
R

R∑
j=1

1
L

L∑
i=1

(
yj(h)− g(xj ;θY (i) ;h)

)2

︸ ︷︷ ︸�MSEh(xt)

=
1
R

R∑
j=1

[
N̂h(xj) + B̂h(xj) + V̂h(xj)

]
=

1
R

R∑
j=1

N̂h(xj)

︸ ︷︷ ︸
N̂h

+
1
R

R∑
j=1

B̂h(xj)
2

︸ ︷︷ ︸
B̂h

+
1
R

R∑
j=1

V̂h(xj)
2

︸ ︷︷ ︸
V̂h

(4.3.8)

53

Machine learning strategies for multi-step-ahead
time series forecasting

with

N̂h(xj) =
(
yj(h)− µ̂j+h|j

)2
,

B̂h(xj) =
(
µ̂j+h|j − g(xj ;θ;h)

)2
,

V̂h(xj) =
1
L

L∑
i=1

[
g(xj ;θY (i) ;h)− g(xj ;θ;h)

]2
,

where g(xj ;θ;h) = 1
L

∑L
i=1 g(xj ;θY (i) ;h) and µ̂j+h|j = Avg[yt+h | xt = xj] is the Monte Carlo estimate of

the conditional expectation at input xj for horizon h.

The conditional expectation µj+h|j can be calculated analytically for linear DGPs and some nonlinear
DGPs (Teräsvirta, 2006). More generally, for nonlinear DGPs, we can use simulations to estimate it
as follows.

For every xj there are different possible subsequent patterns yj that depend on the realization of
the error term. From a fixed starting vector xj , we generate S different h-step realizations (also

called paths), denoted y(h)
s (xj) with s = 1, . . . ,S. Then we compute the average of these S different

realizations to obtain µ̂j+h|j = 1
S

∑S
s=1 y

(h)
s (xj).

Note that the law of large numbers ensures that asymptotically the quantities N̂h, B̂h and V̂h in
expression (4.3.8) will converge to the true values Nh, Bh and Vh in expression (4.2.4). In our
simulations, we used the values L = 1000, R = 2000 and S = 10,000 which have been found to
provide statistically significant results.

Model selection and estimation

In our experiments, we consider the linear (LIN) model and three nonlinear models namely the
neural network (MLP) model, the K-nearest neighbors (KNN) model and the gradient boosting
(BST2) model with bivariate P-splines as base learners. More details about these models are given
in Section 2.2.

For the linear model (see Section 2.2.1), the parameters β are estimated by ordinary least squares
(OLS).

For the MLP model (see Section 2.2.2), the parameters β are estimated by backpropagation, the
number of hidden nodes NH are allowed to range in the set {0,1,2,3,5} (where 0 means no hidden
neurons, i.e. effectively a linear model) and the weight decay λ possible values are from the
following choices {0.005,0.01,0.05,0.1,0.2,0.3}.

For the KNN model (see Section 2.2.3), the number of neighbors is allowed to range in the set
1, . . . ,N where N is the number of examples in the dataset.

For the BST model (see Section 2.2.4), we limit the maximum number of iterations J to 500. The
shrinkage parameter is fixed to ν = 0.3 and the number of knots are set to 20 and 5 for the univariate
and bivariate P-splines, respectively.

In addition to the model parameters, the lag order p is an important parameter that should be
carefully selected. In our simulations, we allow p to range in the set {1, . . . ,7} for the AR DGP, in
{1, . . . ,5} for the STAR DGP, and in {1, . . . ,10} for the NAR DGP.

To validate the different parameters of the models (including the lag order p), we use a time-series
cross-validation approach with five origins (see Section 2.3.5). More precisely, the first part of the

54

Machine learning strategies for multi-step-ahead
time series forecasting

dataset (70%) is used as training set and the remaining part (30%) is used as validation/rolling set.
For model selection, we use nested loops with one loop for each hyperparameter plus an additional
loop at the top for the lag order p.

Finally, we considered a maximum forecasting horizon H = 10 for the AR DGP and the NAR DGP,
and H = 15 for the STAR DGP. To show the importance of the length of the time series T for each
strategy, we compare different sizes, namely T ∈ {50,100,400}.

55

Machine learning strategies for multi-step-ahead
time series forecasting

4.4 Analysis of the recursive and direct strategies

In this section, we will apply the methodology described in Section 4.3 to compare the recursive
and the direct strategies. Recall that we will consider four different scenarios depending on whether
the learning model and the DGP are linear or nonlinear. For each scenario, we will compare the
bias and variance components of the two strategies for two-step ahead forecasts. We will also
perform Monte Carlo simulations to consider the general case of h-step ahead forecasts.

Before considering the four different scenarios, we first derive the expressions of the two-step ahead
forecasts for both the recursive and direct strategies. Then, we analyze the results of some Monte
Carlo simulations to make general observations about the behavior of the different components of
the MSE decomposition.

Let us first state the two-step ahead forecasts of the recursive and direct strategies using the
terminology defined in Section 4.3.1. To simplify notations, we will remove the dependence on the
size of the time series T .

Forecasts of the recursive strategy. To produce two-step ahead forecasts, the recursive strategy
first estimates a one-step-ahead model as in (3.3.1) and then produces forecasts recursively.

A possibly nonlinear model can be written as

m(zt; φ̂) = f (xt)︸︷︷︸
µt+1|t

+δ(zt;φ)

︸ ︷︷ ︸
m(zt ;φ)

+η(zt;φ)εη , (4.4.1)

where m(zt;φ) = EYT [m(zt; φ̂)] is the expectation over all time series datasets of size T , and δ(zt;φ)
and η(zt;φ) are defined in Section 4.3.1.

Two-step forecasts are obtained recursively and can be computed, after some simplifications using
a Taylor series expansion, as follows

g(xt; φ̂;2) (4.4.2)

=m(m(zt; φ̂), yt , yt−1, . . . , yt−p+2; φ̂)

≈ f (f (xt), yt , yt−1, . . . , yt−p+2)

+ δ(f (xt), yt , yt−1, . . . , yt−p+2;φ) + δ(zt;φ)mz1
+

1
2

[δ(zt;φ)]2mz1z1

+ η(f (xt), yt , yt−1, . . . , yt−p+2;φ)εη2
+ η(zt;φ)εη1

mz1
+

1
2

[η(zt;φ)εη1
]2mz1z1

,

where εη1
and εη2

are the stochastic components of the variability term for input zt and
[f (zt), yt , yt−1, . . . , yt−p+2] respectively, and mz1

and mz1z1
are respectively the first and second deriva-

tives of the model m with respect to its first argument.

For the multi-step recursive strategy, defined in (3.3.4), the two-step-ahead forecasts can also be
represented using (4.4.2) since the forecasts are also obtained recursively. However, because the
parameters are selected by minimizing the h-step-ahead error to take into account the propagation
of errors, it will have an impact on the offset and variability terms, δ(zt;φ) and η(zt;φ)εη . Note
that we will only consider the multi-step recursive strategy for nonlinear models.

When the model is linear, expression (4.4.1) can be rewritten as

m(zt; φ̂) = φ0 +φ1yt−1 + · · ·+φpyt−p + η(φ)εη , (4.4.3)

56

Machine learning strategies for multi-step-ahead
time series forecasting

where we used the fact that, for linear models, the offset and the variability terms are independent
of the inputs and only depend on the set of parameters φ = [φ0,φ1, . . . ,φp].

The expression for two-step ahead forecasts, in (4.4.2), for linear models simplifies to

g(xt; φ̂;2) (4.4.4)

= (φ0 +φ1φ0) + (φ2
1 +φ2)yt + · · ·+ (φ1φp−1 +φp)yt−p+2 + (φ1φp)yt−p+1

+ (φ1 + 1)η(φ)εη ,

where we used the fact that, in expression (4.4.2), if the model m is linear as in (4.4.3), then we
have mz1

= φ1, mz1z1
= 0, and εη1

= εη2
= εη .

Forecasts of the direct strategy. A model is estimated to directly produce two-step ahead fore-
casts. For a possibly nonlinear model it can be written as

g(xt; γ̂ ;2)

= µt+2|t + δ(rt;γ)︸ ︷︷ ︸
m2(rt ;γ)

+η(rt;γ)εη . (4.4.5)

In contrast to the forecasts of the recursive strategy in (4.4.2), we can see that the conditional mean
µt+2|t appears in the previous expression.

If the model is linear, then the previous expression can be rewritten as

g(xt; γ̂ ;2)

= γ0 +γ1yt + · · ·+γpyt−p+1︸ ︷︷ ︸
m2(rt ;γ)

+η(γ)εη , (4.4.6)

where γ = [γ0,γ1, . . . ,γp].

The different expressions derived here will be used in the next sections to compute the bias and
variance components for two-step ahead forecasts.

In addition to the theoretical analysis, we will use Monte Carlo simulations to estimate the different
component of the MSE decomposition as explained in Section 4.3.2.

We will consider different learning models with both the recursive (REC) and direct (DIR) strategies.
The two strategies will be denoted as REC-LIN or DIR-LIN with the linear model, REC-KNN or
DIR-KNN with the KNN model, REC-MLP or DIR-MLP with the MLP model and REC-BST2 or
DIR-BST2 with the BST2 model. The multistep recursive strategy will be denoted as RTI.

Before comparing the recursive and direct strategies, we will first make general observations about
the different components of the MSE decomposition by considering the results of the STAR DGP.
The results for the recursive and direct strategies are given in Figures 4.1 and 4.2, respectively.

Each figure presents stacked area plots giving the relative contribution of the noise component
Nh, the bias component Bh and the variance component Vh to the MSE over the forecast horizon
(h = 1, . . . ,H) for different learning models (in column) and different time series lengths T (in row).
The noise component is given in grey, the bias in cyan and the variance in yellow. These three
components are defined in (4.2.4) and are estimated as explained in Section 4.3.2.

In both Figures 4.1 and 4.2, we can see that the noise component does not depend on the forecasting
strategy, the learning model or the time series length. In fact, the noise component only depends on

57

Machine learning strategies for multi-step-ahead
time series forecasting

2 4 6 8 12

0.
00

0.
04

0.
08

T = 50 − REC−LIN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 50 − REC−MLP

Horizon
E

rr
or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 50 − REC−KNN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 50 − REC−BST2

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 100 − REC−LIN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 100 − REC−MLP

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 100 − REC−KNN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 100 − REC−BST2

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 400 − REC−LIN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 400 − REC−MLP

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 400 − REC−KNN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 400 − REC−BST2

Horizon

E
rr

or

Figure 4.1: STAR DGP. The MSE of recursive forecasts generated with different learning models (by
column) and different time series lengths (by row) is decomposed into noise (in grey), bias
(in cyan) and variance (in yellow). The stacked area plots show the relative contribution of
each component to the total MSE over the forecast horizon.

the DGP and represents the MSE of the optimal forecasts, that is the conditional mean. In addition,
the noise component is increasing with the forecast horizon, which is consistent with expression
(4.3.6) in Section 4.3.1. Finally, the noise component dominates the other components of the MSE
decomposition, which is particularly noticeable for long horizons. The horizontal line corresponds
to the MSE of the (unconditional) mean forecasts computed with T observations. This line allows
us to have a measure of the predictability of the time series relative to the mean forecasts. In fact,
we can see in the first column that the difference between the MSE of the optimal forecasts and
the mean forecasts is decreasing with the horizon. This shows that the longer the horizon, the less
predictable the DGP is.

Similarly to the noise component, the variance component tends to increase with the forecast
horizon. Furthermore, independently from the forecasting strategy, it tends to decrease with longer
time series (compare T = 50 in the first row with T = 400 in the last row). If we compare the first
column with the other three columns, that is the linear model with nonlinear models, we can
observe that the linear model has a smaller variance than the nonlinear models. Also, among the
nonlinear models, we can notice a difference in both the bias and the variance components which
can be explained by the difference in flexibility among these models.

Concerning the bias component, we can see that it is high for the linear model and low for the
nonlinear models. This can be explained by the fact that the DGP is nonlinear and so the linear
model cannot capture this nonlinearity. Also, the behavior of the bias component is changing with
the model and the strategy. Increasing the sample size is also decreasing the bias, especially at
short horizons, but is less pronounced than with the variance component. Finally, we can also

58

Machine learning strategies for multi-step-ahead
time series forecasting

2 4 6 8 12

0.
00

0.
04

0.
08

T = 50 − DIR−LIN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 50 − DIR−MLP

Horizon
E

rr
or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 50 − DIR−KNN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 50 − DIR−BST2

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 100 − DIR−LIN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 100 − DIR−MLP

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 100 − DIR−KNN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 100 − DIR−BST2

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 400 − DIR−LIN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 400 − DIR−MLP

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 400 − DIR−KNN

Horizon

E
rr

or

2 4 6 8 12

0.
00

0.
04

0.
08

T = 400 − DIR−BST2

Horizon

E
rr

or

Figure 4.2: STAR DGP. The MSE of direct forecasts generated with different learning models (in column)
and different time series lengths (in row) is decomposed into noise (in grey), bias (in cyan)
and variance (in yellow). The stacked area plots show the relative contribution of each
component to the total MSE over the forecast horizon.

notice that the bias and variance components have comparable values for short horizons but the
variance tends to dominate the bias for longer horizons.

From these first observations, we have seen that the bias and variance components of each strategy
depend on many interacting factors including the learning model, the DGP, the time series length
as well as the forecast horizon.

In the following sections, we will compare the recursive and direct strategies in the four different
scenarios presented in Section 4.3.2. For each scenario, we will first compute the bias and variance
components of the two-step ahead forecast errors, as given in expression (4.3.1). For the expressions
of the two-step ahead forecasts, we will use expressions (4.4.4) and (4.4.6) for a linear model and
expressions (4.4.2) and (4.4.5) for a nonlinear model. For the conditional mean at horizon h = 2,
we will use expression (4.3.5) for a linear DGP and (4.3.2) for a nonlinear DGP.

For each scenario, we will also compare the recursive and direct strategies for the general case of
h-step ahead forecasts with Monte Carlo simulations. To allow a better visualization and a deeper
comparison between the strategies, the different components will be displayed differently than in
Figures 4.1 and 4.2. Each figure will give for different values of T , namely {50,100,400}, the Monte
Carlo estimations of the unconditional MSE (first column), the bias (second column), the variance
(third column) and the bias plus variance (fourth column). In the first column, corresponding to
the MSE, the bias and variance components of the different strategies are hidden by substantial
noise, making comparisons between strategies difficult. Consequently, we will consider the three
other columns to compare the strategies and use the MSE as a measure of the predictability of the
time series relative to the mean (the red line). The MSE of the conditional expectation, which also
represents the noise variance, will be plotted in grey.

59

Machine learning strategies for multi-step-ahead
time series forecasting

4.4.1 Scenario A: Linear model and linear DGP

For the recursive strategy, expression (4.3.1) is given by

BREC
2 (xt) +V REC

2 (xt) (4.4.7)

=
[(

(ϕ0 +ϕ1ϕ0) + (ϕ2
1 +ϕ2)yt + · · ·+ (ϕ1ϕd−1 +ϕp)yt−d+2 + (ϕ1ϕp)yt−d+1

)
(4.4.8)

−
(
(φ0 +φ1φ0) + (φ2

1 +φ2)yt + · · ·+ (φ1φp−1 +φp)yt−p+2 + (φ1φp)yt−p+1

)]2
(4.4.9)

+ (φ1 + 1)2η(φ)2. (4.4.10)

For the direct strategy, expression (4.3.1) is given by

BDIR
2 (xt) +V DIR

2 (xt) (4.4.11)

=
[(

(ϕ0 +ϕ1ϕ0) + (ϕ2
1 +ϕ2)yt + · · ·+ (ϕ1ϕd−1 +ϕd)yt−d+2 + (ϕ1ϕd)yt−d+1

)
(4.4.12)

−
(
γ0 +γ1yt + · · ·+γp−1yt−p+2 +γpyt−p+1

)]2
(4.4.13)

+ η(γ)2.

The recursive strategy first estimates a linear model, as in (4.4.3), for the linear DGP, as in (4.3.4);
then two-step forecasts are produced recursively using the estimated model. In contrast, the direct
strategy estimates a linear model that directly estimates two-step ahead dependencies where the
parameters γ estimate a nonlinear transformation of the coefficients ϕ. Then, two-step ahead
forecasts can be directly produced from the model.

If the model is well-specified, that is p = d, and if the parameters are correctly identified (ϕj = φj
for all j = 1, . . . ,p), then the two-step ahead forecasts of the recursive strategy will be unbiased as
can be seen in (4.4.8)-(4.4.9). The two-step direct forecasts will also be unbiased provided that the
direct parameters γ correctly identify the nonlinear transformation of the coefficients ϕ as can be
seen in (4.4.12)-(4.4.13). In other words, if p ≥ 3, we need to have γ0 = ϕ0 +ϕ1ϕ0, γj = ϕ1ϕj +ϕj+1
for j = 1, . . . ,p − 1, and γp = ϕ1ϕp. If the model is well-specified, the recursive strategy is known to
provide more efficient parameter estimates than the direct strategy, notably because the recursive
strategy uses more data points (see Section 3.4).

If the model is misspecified, that is p , d or if the parameters are not correctly identified (ϕj , φj
for any j = 1, . . . ,p), then we can see in (4.4.8)-(4.4.9) that two-step ahead forecasts will be biased.
However, since the parameters are selected by minimizing 2-step ahead errors, as can be seen in
(3.3.6) with h = 2, direct forecasts are more robust to misspecifications.

Finally, it is worth noting that a model is an approximation of the reality and thus in practice a
model is almost always misspecified. With the previous discussion, one might think that direct
linear forecasts provide better forecasts than recursive linear forecasts in practice. However, even if
biased, recursive linear forecasts can have a smaller variance than direct linear forecasts especially
for long horizons and subsequently obtain a smaller MSE.

Let us now consider Monte carlo simulations for the general case of h-step ahead forecasts. We will
consider both a well-specified and a misspecified model for the AR DGP defined in (4.3.7). For the
well-specified model, the lag order p is allowed to range in {1, . . . ,7}, which includes the true lag
order d = 6. For the misspecified model, the lag order p is only allowed to range in {1,2,3} and thus
cannot be equal to the true lag order d = 6. We will use LIN to denote a well-specified model and
LINMIS to denote a misspecified model. The results are given in Figure 4.3.

60

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

REC−LIN
DIR−LIN
REC−LINMIS
DIR−LINMIS

T = 50

Horizon
B

ia
s2

0.
00

0.
15

0.
30

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

0.
5

1.
0

1.
5

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
00

0.
10

0.
20

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
10

0.
20

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0.
10

0.
20

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

2 4 6 8 10

Figure 4.3: AR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with a well-
specified linear model (LIN) and a misspecified linear model (LINMIS).

Let us first compare REC-LIN with DIR-LIN. In the last column, we can see for all values of T that
after the first few horizons, REC-LIN has smaller errors than DIR-LIN. For T = 50, we can see in
the second and the third column that REC-LIN has both a smaller bias and a smaller variance,
with a larger difference in variance. For T = 100 and T = 400, the difference is mainly in the
variance component. This confirms the theoretical findings that, when the model is well-specified,
the recursive strategy produces more efficient parameter estimates that lead to better forecasts.
Finally, in the first column, we can see that the linear forecasts become closer and closer to the
optimal forecasts (grey line) as T increases. Recall that under appropriate conditions, REC-LIN
and DIR-LIN are asymptotically equivalent (see Section 3.4).

Let us now compare REC-LINMIS with DIR-LINMIS. In the last column, we can see for T = 50 and
T = 100 that REC-LINMIS has smaller errors than DIR-LINMIS for long horizons, due to a smaller
variance as can be seen in third column. For T = 100 and T = 400, we can see a smaller bias for
DIR-LINMIS in the second column, which confirms the robustness to misspecification of the direct
strategy.

One limitation of this comparison is that the variance component is also affected by the variability
of the lag order set. In fact, the lag order p for LIN ranges in the set {1,2,3} while for LINMIS, it
ranges in the set {1, . . . ,7}. Ideally, to see the difference between a well-specified and a misspecified
model, we should set the value of the lag order to a fixed value and analyze the bias and variance
components. However, we decided to keep the variability of the lag order set to mimic a realistic
scenario where the lag order must also be selected.

Let us now compare REC-LINMIS with REC-LIN and DIR-LINMIS with DIR-LIN. For T = 50,
we can see in the last column that both REC-LINMIS and DIR-LINMIS have smaller errors than
REC-LIN and DIR-LIN, respectively. The error decrease is mainly due to the decrease in the
variance component, particularly for long horizons. For T = 100, the increase in bias becomes

61

Machine learning strategies for multi-step-ahead
time series forecasting

important as can be seen in the second column and so the performances of the strategies become
closer. For T = 400, the increase in bias becomes more important than the decrease in variance and
so REC-LIN and DIR-LIN end up having smaller errors than REC-LINMIS and DIR-LINMIS.

4.4.2 Scenario B: Linear model and nonlinear DGP

For the recursive strategy, expression (4.3.1) is given by

BREC
2 (xt) +V REC

2 (xt) (4.4.14)

=

f (f (xt), yt , . . . , yt−d+2) +
1
2
σ2fx1x1︸ ︷︷ ︸

µt+2|t

(4.4.15)

−
(
(φ0 +φ1φ0) + (φ2

1 +φ2)yt + · · ·+ (φ1φp−1 +φp)yt−p+2 + (φ1φp)yt−p+1

)]2
(4.4.16)

+ (φ1 + 1)2η(φ)2

For the direct strategy, expression (4.3.1) is given by

BDIR
2 (xt) +V DIR

2 (xt) (4.4.17)

=

f (f (xt), yt , . . . , yt−d+2) +
1
2
σ2fx1x1︸ ︷︷ ︸

µt+2|t

−
(
γ0 +γ1yt + · · ·+γpyt−p+1

)

2

(4.4.18)

+ η(γ)2

Because the DGP is nonlinear, we have fx1x1
, 0 in (4.4.15) and (4.4.18) and as a result, the two-step

ahead recursive and direct linear forecasts are biased since linear models cannot capture the
nonlinearity of the function f . In particular, the bias will be high if |fx1x1

| is large; that is when f
has large curvatures or if p , d.

In the scenario A (previous section), the difference between the bias component of the recursive
and direct strategies was mainly due to the different way of generating the forecasts, since there
were no discrepancies between the model and the DGP. In this scenario, there is an additional
source of bias stemming from the non-captured nonlinearity. The bias due to the nonlinearity
is expected to be similar for the recursive and direct strategies, and therefore the difference is
expected to come from the different way of generating the forecasts.

The performance of the recursive and direct strategies in this scenario will depend on the nonlin-
earity of the function f , that is on |fx1x1

|. In particular, if the function is weakly nonlinear, that is
|fx1x1

| is small, linear forecasts will provide a good first order approximation and then this scenario
will reduce to scenario A. For strongly nonlinear function f , the bias from both strategies will be
high but the reduced variance of the linear model can induce a smaller MSE.

In fact, we expect the variance component of the recursive strategy to be smaller than the direct
strategy especially with short time series and at long horizons. The higher variance of the direct
strategy should come from its additional flexibility (e.g. different lag orders at each horizon) and
the reduced data set at each horizon.

62

Machine learning strategies for multi-step-ahead
time series forecasting

Let us now consider Monte Carlo simulations for the general case of h-step ahead forecasts. The
results for the STAR and the NAR DGP are given in Figures 4.4 and 4.5, respectively.

T = 50

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

REC−LIN
DIR−LIN

T = 50

Horizon

B
ia

s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
8

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
4

0.
00

8

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

00
0.

00
10

0.
00

20

2 4 6 8 12

T = 400

Horizon
B

ia
s2

+
V

ar
ia

nc
e

0.
00

0
0.

01
0

2 4 6 8 12

Figure 4.4: STAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with the LIN
model.

In both Figures 4.4 and 4.5, we can see in the last column that REC-LIN has smaller errors than
DIR-LIN for both T = 50 and T = 100 consistently over the horizon. The third column shows that
this is due to a smaller variance that dominates the errors.

4.4.3 Scenario C: Nonlinear model and linear DGP

This scenario is closely related to scenario A with the difference that the model is allowed to be
nonlinear even if the true DGP is linear. The term “allow” is important since, for certain class of
models, the final model can be a linear model, e.g. a neural network with zero hidden nodes.

For the recursive strategy, expression (4.3.1) is given by

BREC
2 (xt) +V REC

2 (xt) (4.4.19)

=
[(
δ(f (xt), yt , yt−1, . . . , yt−p+2;φ) + δ(zt;φ)mz1

(4.4.20)

+
1
2

[δ(zt;φ)]2mz1z1
+

1
2

[η(zt;φ)]2mz1z1

)]2
(4.4.21)

+ [η(f (xt), yt , yt−1, . . . , yt−p+2;φ)]2 + [η(zt;φ)mz1
]2 (4.4.22)

+
1
2

[η(zt;φ)]4m2
z1z1

+ 2η(f (xt), yt , yt−1, . . . , yt−p+2;φ)η(zt;φ)mz1
E[εη1

εη2
]

+ η(zt;φ)2η(f (xt), yt , yt−1, . . . , yt−p+2;φ)mz1z1
E[ε2

η1
εη2

], (4.4.23)

63

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
1

2
3

4

2 4 6 8 10

REC−LIN
DIR−LIN

T = 50

Horizon
B

ia
s2

0.
00

0.
10

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 100

Horizon

M
S

E

0
1

2
3

4

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
00

0.
02

0.
04

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

T = 400

Horizon

M
S

E

0
1

2
3

4

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0
0.

01
0

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0.
06

0.
12

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0.
06

0.
12

2 4 6 8 10

Figure 4.5: NAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with the LIN
model.

where we used the fact that E[ε3
η] = 0 and E[ε4

η] = 3 for the standard normal distribution.

For the direct strategy, expression (4.3.1) is given by

BDIR
2 (xt) +V DIR

2 (xt) (4.4.24)

=

(ϕ0 +ϕ1ϕ0) + (ϕ2
1 +ϕ2)yt + · · ·+ (ϕ1ϕd−1 +ϕd)yt−d+2 + (ϕ1ϕd)yt−d+1︸ ︷︷ ︸

µt+2|t

−m2(rt;γ)

2

+ η(rt;γ)2. (4.4.25)

In expressions (4.4.20)-(4.4.21) for the bias component of the recursive strategy, we can see that
the offset δ(·;φ) and the variability term η(zt;φ) of the first horizon are propagated to the second
horizon with an amplification when the model m produces a function that has large variations (i.e.
mz1

and mz1z1
are large in magnitude). In particular, increasing or decreasing the complexity of the

model (mz1z1
) will not prevent the amplification of the errors except if the model becomes linear,

that is mz1z1
= 0. A similar behavior is observed for the variability terms in the variance component

of the recursive strategy, as can be seen in (4.4.22)–(4.4.23).

In contrast to the recursive strategy, the direct strategy does not suffer from the accumulation
of errors and, provided that the model is flexible enough, the bias can be made arbitrarily small.
However, the direct strategy can have a higher variance due to the irregularities that can be caused
by having consecutive forecasts generated by potentially very different models. If these models are
allowed to be nonlinear, then the increase in variance will be exacerbated, especially if they have a
large flexibility or if the input includes several lagged variables.

64

Machine learning strategies for multi-step-ahead
time series forecasting

In this scenario, because the DGP is linear, nonlinear models that have large variations will only
increase the errors and will not bring any benefit. In particular, having mz1z1

, 0 is not necessary
and instead,mz1z1

should be made equal to zero to avoid the amplification of errors for the recursive
strategy and to decrease the variance of the direct models.

In consequence, this scenario will be favorable to nonlinear models that effectively switch to a
linear model. In that case, we will have mz1z1

= 0 and mz1
= φ1. For the bias component, we will

obtain (φ1 + 1)2δ(φ)2, which is a different way of writing expressions (4.4.8)-(4.4.9). In fact, the
term δ(φ) includes the errors due to having p , d or φj , ϕj for some j = 1, . . . ,p. For the variance
component, we will obtain (φ1 + 1)2η(φ)2, the same variance component as in expression (4.4.10).

For the direct strategy, if the model switches to a linear model, then (4.4.24) would be similar
to (4.4.11). One notable difference with the recursive strategy is that for the direct forecasts
with nonlinear models to be exactly equal to the direct forecasts of scenario A, all the models
should switch to linear models. Because of the noise and the limited size of real-world time series,
requiring all nonlinear direct models to switch to linear models can be more difficult than requiring
a one-step recursive model to switch to a linear model. Nevertheless, if both the recursive and
direct models switch to linear models, then this scenario becomes similar to the scenario A.

Let us now consider the multi-step recursive strategy, where the parameters are estimated by
minimizing multi-step-ahead errors instead of one-step-ahead errors but where the forecasts are
still obtained recursively as with the recursive strategy. For this strategy, we need to find to select
the parameters of a model, that when applied recursively several times is able to estimate the
conditional mean.

Compared to the recursive strategy, both the bias and variance can significantly be reduced
especially for long horizons, notably due to the limitation of the error amplification; but for short
horizons, the difference between the two strategies is not expected to be high.

Compared to the direct strategy which also deals with multi-step errors, this strategy incurs
restrictions on the model that may somewhat limit its ability to fit the true DGP, leading to some
bias. However, since the DGP is linear in this scenario, the model parameters might be easier
to select. The two strategies can a have close variance component for short time series but the
difference should increase with a longer time series, notably because the multi-step recursive
strategy still produces forecasts recursively.

Let us now consider Monte Carlo simulations for the general case of h-step ahead forecasts. Figure
4.6 gives the results for the KNN and MLP models with the AR DGP.

Let us first consider the KNN model. In the last column of Figure 4.6, we can see that DIR-KNN
has smaller errors than REC-KNN consistently over the horizon. If we look at the bias and variance
components in the second and the third columns, we can see that the smaller errors of DIR-KNN
are due to its smaller variance since it does not suffer from the amplification of errors as with REC-
KNN. In fact, both strategies have a comparable bias component but DIR-KNN has a significantly
smaller variance.

For the MLP model, we obtained different results than for the KNN model. In the last column of
Figure 4.6, we see that REC-MLP has smaller errors than DIR-MLP. Similarly to the KNN model,
both strategies have a comparable bias component but REC-MLP has a smaller variance than
DIR-MLP. This can be explained by the fact that, in contrast to the KNN model, the MLP model
has the ability to switch or at least to be close to a linear model. In this case, since the DGP is
indeed linear, the MLP model can match the DGP and so REC-MLP can benefit from more efficient
parameter estimates than DIR-MLP. The fact that the MLP model is closer to the linear DGP than

65

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

REC−MLP
DIR−MLP
REC−KNN
DIR−KNN

T = 50

Horizon
B

ia
s2

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0
1

2
3

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
0

0.
2

0.
4

0.
6

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

Figure 4.6: AR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with the MLP
and the KNN model.

the KNN model is also confirmed by the smaller bias component for both strategies as can be seen
in the second column of Figure 4.6.

To illustrate the cost of extending the model space beyond the DGP, Figure 4.7 gives the results for
the MLP and the LIN model.

As expected, we see in the last column of Figure 4.7 that the LIN model has a smaller error than
the MLP model for both recursive and direct strategies. In the third column, we can see that the
gain with the LIN model with respect to the MLP model is mainly in terms of variance. For T = 50
and T = 100, both models have a close bias component. For T = 400, the relative gap in bias is
more noticeable.

Ideally, we want the MLP model to always switch to the LIN model since the true DGP is linear.
However, because of the limited amount of data and the overfitting problem, it is hard to achieve
that setting in practice. In other words, the MLP model will not necessarily select zero hidden
nodes, and as a result, the MLP model will suffer from a higher variance due to the additional
flexibility. However, if a small number of hidden nodes is used such as one hidden node, then the
MLP model will not be too far from the LIN model and the increase in variance will be small.

Figure 4.8 shows the results for the multi-step recursive strategy with the KNN model.

In the last column, we can see that RTI-KNN has significantly reduced the errors of REC-KNN.
The third column shows that this is due to the high decrease in variance and in the second column,
we can see that the different strategies have a comparable bias component. This suggests that the
main advantage of RTI-KNN compared to REC-KNN is the smaller variance of the forecasts.

If we compare RTI-KNN with DIR-KNN in the last column, we can see that DIR-KNN dominates
RTI-KNN consistently over the horizon. This is also observed in the second and third columns for

66

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

REC−MLP
DIR−MLP
REC−LIN
DIR−LIN

T = 50

Horizon
B

ia
s2

0.
00

0.
15

0.
30

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
00

0.
10

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
5

1.
0

1.
5

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
02

0.
04

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

Figure 4.7: AR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with the MLP
and the LIN model.

the bias and variance components. We can explain this behavior by the restrictions incurred by the
RTI-KNN on the model that may somewhat limit its ability to fit the true DGP, leading to some
bias. Also, although it allows a different set of parameters at each horizon, the forecasts are still
produced recursively, which can explain the higher variance of RTI-KNN compared to DIR-KNN.

4.4.4 Scenario D: Nonlinear model and nonlinear DGP

In this scenario, the DGP is nonlinear as in scenario B (Section 4.4.2), but now the model is
nonlinear and can fit a nonlinear function.

For the recursive strategy, expression (4.3.1) is given by

BREC
2 (xt) +V REC

2 (xt) (4.4.26)

=
[

1
2σ

2fx1x1
−
(
δ(f (xt), yt , yt−1, . . . , yt−p+2;φ) + δ(zt;φ)mz1

(4.4.27)

+
1
2

[δ(zt;φ)]2mz1z1
+

1
2

[η(zt;φ)]2mz1z1

)]2
(4.4.28)

+ [η(f (xt), yt , yt−1, . . . , yt−p+2;φ)]2 + [η(zt;φ)mz1
]2 (4.4.29)

+
1
2

[η(zt;φ)]4m2
z1z1

+ 2η(f (xt), yt , yt−1, . . . , yt−p+2;φ)η(zt;φ)mz1
E[εη1

εη2
]

+ η(zt;φ)2η(f (xt), yt , yt−1, . . . , yt−p+2;φ)mz1z1
E[ε2

η1
εη2

], (4.4.30)

where we used the fact that E[ε3
η] = 0 and E[ε4

η] = 3 for the standard normal distribution.

67

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

REC−KNN
RTI−KNN
DIR−KNN

T = 50

Horizon
B

ia
s2

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0
1

2
3

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

Figure 4.8: AR DGP. MSE decomposition of recursive (REC), multi-step recursive (RTI) and direct
(DIR) forecasts with the KNN model.

For the direct strategy, expression (4.3.1) is given by

BDIR
2 (xt) +V DIR

2 (xt) (4.4.31)

=

f (f (xt), . . . , yt−d+2) + 1
2σ

2fx1x1︸ ︷︷ ︸
µt+2|t

−m2(rt;γ)

2

+ η(rt;γ)2.

Similarly to scenario C (Section 4.4.3), we see for the bias component of the recursive strategy in
(4.4.27)-(4.4.28), an amplification of both the offset δ(·;φ) and the variability term η(·;φ) when the
model m produces a function that has large variations (i.e. mz1

and mz1z1
are large in magnitude).

However, in contrast to scenario C, since the DGP is nonlinear, i.e. fx1x1
, 0, we now have an

additional term 1
2σ

2fx1x1
that will remain even if the model is able to perfectly estimate the function

f , i.e. even if δ(·;φ) = 0 and η(·;φ) = 0. In fact, nonlinear recursive forecasts for a nonlinear DGP
are known to be asymptotically biased even if the model is well-specified (Brown and Mariano,
1984; Lin and Granger, 1994). In particular, the bias will be large whenever |fx1x1

| is large; that is
when f is highly nonlinear or has high curvatures.

An amplification of the variability terms is also observed in the variance component as can be seen
in (4.4.29)–(4.4.30). One difference with scenario C is that now the DGP is nonlinear and hence
the estimated model is expected to be more complex than with a linear DGP, which will in turn
induce a higher amplification of the variability terms.

68

Machine learning strategies for multi-step-ahead
time series forecasting

The direct strategy would generally be preferred in that case since it estimates the conditional mean
directly and therefore does not suffer from the accumulation of errors, which can be particularly
high in this scenario, where both the model and the DGP are nonlinear. Also, since the model
m2 is nonlinear and hence has a high flexibility, the bias can be arbitrarily small provided that
m2 � µt+2|t where �means “has the same form”. Although the direct strategy does not suffer from
the accumulation of errors, it can suffer from a high variance at long horizons. In fact, the direct
strategy has a dataset reduced by h − 1 points at horizon h which can be particularly large for
short time series. Also, we can see in (4.4.25) that the variance depends notably on the variability
induced by the dimensionality of the input vector rt and the model parameters γ . This variability
can be particularly large for highly nonlinear models which involve many interacting variables in
rt or have a large set of parameters γ .

In scenario B, we have seen that multi-step forecasts with linear models are biased because they
cannot capture the nonlinearity of the DGP. For the recursive strategy, allowing the model to be
nonlinear does not remove the bias for long horizons and can possibly make the error worse than
using linear models, due to the increased variance. For the direct strategy, having nonlinear models
allow to capture the nonlinearity of the forecast function. However, even if the DGP is nonlinear,
the low variance of linear models can make the MSE smaller than the high variance of nonlinear
models, particularly if the DGP is weakly nonlinear or if the time series is short.

Let us now consider the multi-step recursive strategy. Because both the model and the DGP are
nonlinear, this scenario is the worst scenario for the recursive strategy which suffers from the
amplification of errors. So, the multi-step recursive strategy is expected to significantly reduce
the errors by taking into account the propagation of errors when selecting the model parameters.
Compared to the direct strategy, the multi-step recursive strategy incurs restrictions on the model
that may limit its ability to fit the true DGP. In particular, because the DGP is nonlinear, finding
the set of parameters might be more difficult than in scenario C, which can lead to some bias.

Let us now consider Monte Carlo simulations for the general case of h-step ahead forecasts. Figures
4.9 and 4.10 show the results for the NAR and the STAR DGP, respectively.

In the last column of Figure 4.9, the amplification of errors can be clearly seen for both REC-MLP
and REC-KNN. In fact, we can see the errors of the recursive strategy growing linearly with the
horizon while the errors of the direct strategy are stabilizing. The same behavior is observed for
both the bias and variance components of the recursive strategy in the second and third columns.
This is consistent with the theoretical analysis performed above. For T = 50, the difference between
the recursive and direct strategies is small because of the high variance that dominates the errors
with short time series.

In the last column of Figure 4.10, we can see that REC-MLP has a smaller error than DIR-MLP
consistently over the horizon but the relative difference decreases with longer time series. In the
third column, we can see that the component dominating the errors for REC-MLP and DIR-MLP is
the variance component.

For the KNN model, we observe the opposite, that is REC-KNN and DIR-KNN have close perfor-
mance for T = 50 but as the time series length increases, DIR-KNN outperforms REC-KNN. Again,
in the third column, we can see the importance of the variance component compared to the bias
component, with DIR-KNN having a smaller variance than REC-KNN for T = 100 and T = 400.

If we compare the results for the KNN model and the MLP model in Figure 4.10, we can see in
the second column a higher bias for the KNN model compared to the MLP model, particularly for
the first few horizons. This can be explained by the fact that the NAR DGP has an MLP model as
underlying process (see Section 4.3.2) while the KNN model is a locally constant model. The fact

69

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

REC−MLP
DIR−MLP
REC−KNN
DIR−KNN

T = 50

Horizon
B

ia
s2

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
6

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

01
5

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

Figure 4.9: STAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with the MLP
and the KNN model.

that the bias reduces with the horizon can possibly be explained by the fact that the conditional
mean becomes closer to the (unconditional) mean, which is easier to estimate.

In the scenario B, we have seen that the linear model is biased for nonlinear DGPs since it cannot
capture the nonlinearity of the function. To shed some light on the differences between linear and
nonlinear models when forecasting nonlinear DGPs, Figure 4.11 and 4.12 give the results for both
the LIN and MLP models with the STAR and NAR DGPs, respectively.

For the STAR DGP, we can see in the third column of Figure 4.11 that both REC-LIN and DIR-LIN
benefit from a lower variance compared to REC-MLP and DIR-MLP for the different values of
T . A notable exception is DIR-LIN that has similar performance to REC-MLP and DIR-MLP for
T = 50. In the second column however, we see a larger bias component for REC-LIN and DIR-LIN
compared to REC-MLP and DIR-MLP. For T = 100 and T = 400, REC-MLP has a higher bias than
all strategies at long horizons.

In the last column of Figure 4.11, we can see the sum of the bias and variance components. For
T = 50, REC-LIN has smaller errors than all strategies particularly for long horizons. For all
values of T , we can see that REC-MLP has smaller errors than both REC-LIN and DIR-LIN for
short horizons but gets worse for long horizons due to the amplification of errors. DIR-MLP has
a comparable error to REC-LIN and DIR-LIN for T = 100, and outperforms the LIN model for
T = 400.

These results are interesting since they show that even if the linear model is biased for the nonlinear
DGP, the smaller variance greatly reduces the total MSE for short time series. For longer time
series, the increase in bias becomes more important than the decrease in variance.

For the NAR DGP, we can see in the last column of Figure 4.11 that the LIN model outperforms the
MLP model and again, the third column shows that this is due to the smaller variance of the LIN

70

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

REC−MLP
DIR−MLP
REC−KNN
DIR−KNN

T = 50

Horizon
B

ia
s2

0.
0

0.
2

0.
4

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
0

0.
2

0.
4

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
10

0.
20

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
2

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

Figure 4.10: NAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with the MLP
and the KNN model.

model. In terms of bias, recursive forecasts have smaller errors than direct forecasts for T = 50, but
as T increases, direct forecasts become better than recursive forecasts as can be seen for T = 400.

Figures 4.13 and 4.14 show the results for the multi-step recursive strategy with the KNN model
(RTI-KNN).

In both Figures, we can see in the third column that RTI-KNN has a smaller variance than REC-
KNN, especially for long horizons. Also, the reduction in variance becomes more important for
long time series. In the second column, we can see that REC-KNN has a smaller bias component
than RTI-KNN for short horizons, and vice versa for long horizons. The last column shows that
RTI-KNN is reducing the errors of REC-KNN for long horizons and has slightly higher errors for
short horizons.

If we compared RTI-KNN with DIR-KNN in Figure 4.13, we can see that DIR-KNN has close
performance to RTI-KNN for T = 50 and outperforms RTI-KNN for T = 100 and T = 400. In Figure
4.14, DIR-KNN and RTI-KNN have always close performance. Finally, RTI-KNN is always closer to
DIR-KNN than REC-KNN.

4.4.5 Summary

We can summarize the observations of the comparison between the recursive and direct strategies
for the different scenarios as follows:

• The noise variance dominates the bias and variance components, and the variance component
tends to dominate the bias component, especially for long horizons. As the time series length
increases, both the bias and variance decrease with a larger decrease for the variance.

71

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

REC−MLP
DIR−MLP
REC−LIN
DIR−LIN

T = 50

Horizon
B

ia
s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
8

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

01
5

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
4

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

Figure 4.11: STAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with the
MLP and the LIN model.

• Scenario A: Linear model and linear DGP. With a well-specified model, recursive forecasts
have smaller errors than direct forecasts, especially with short time series at long horizons.
As the time series length increases, the difference in performance between the two strategies
decreases, and asymptotically they become equivalent. We have confirmed the advantage
of recursive forecasts with a well-specified model and the robustness of direct forecasts for
misspecification.

• Scenario B: Linear model and nonlinear DGP. Both recursive and direct forecasts are biased
since they cannot generate nonlinear forecasts. In particular, the bias is dominated by the
non-captured nonlinearity rather than the difference in the way the forecasts are generated.

For short time series and long horizons, recursive forecasts are favored because of their
reduced variance. For longer time series, recursive and direct forecasts have the same
performance.

• Scenario C: Nonlinear model and linear DGP. The considered model form plays an impor-
tant role in the difference between recursive and direct forecasts. If the model is able to
effectively switch to a linear model, this scenario becomes equivalent to scenario A.

If the model is nonlinear, the recursive and direct strategies will generate nonlinear forecasts
which will bring no benefits over linear forecasts since the DGP is linear. Because of the
additional flexibility of nonlinear models, both recursive and direct forecasts will have a
higher variance than linear forecasts.

In particular, because of the propagation of errors, recursive forecasts will have a higher
variance than direct forecasts, which benefit from a higher decrease in variance than recursive
forecasts for an increasing time series length.

72

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

REC−MLP
DIR−MLP
REC−LIN
DIR−LIN

T = 50

Horizon
B

ia
s2

0.
00

0.
10

0.
20

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
00

0.
03

0.
06

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0.
10

0.
20

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0.
10

0.
20

2 4 6 8 10

Figure 4.12: NAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with the MLP
and the LIN model.

• Scenario D: Nonlinear model and nonlinear DGP. Recursive forecasts suffer from the prop-
agation of errors which leads to both a higher bias and variance component compared to
direct forecasts especially for long horizons. Also, recursive forecasts are known to be
asymptotically biased even if the model is well-specified.

Although direct forecasts do not suffer from the propagation of errors, they can have a high
variance with short time series at long horizons. However, with long time series, direct
forecasts have typically lower errors than recursive forecasts, especially for long horizons.

The linear forecasts in scenario B provide similar or better forecasts than nonlinear forecasts
with short time series, particularly with recursive forecasts. This suggests that the lower
variance of linear models with short time series can benefit the forecasts even if the forecasts
are biased for the nonlinear DGP. Finally, the benefit from nonlinear models will also depend
on the degree of nonlinearity of the DGP.

• The main benefit of the multi-step recursive strategy seems to stem from its smaller variance
for long horizons compared to the recursive strategy, notably because it takes into account
the propagation of errors when estimating the model parameters.

The multi-step recursive strategy has closer performance to the direct strategy than the
recursive strategy, but the direct strategy has always smaller errors since the forecasts of
the multi-step recursive strategy are still generated recursively even if a different set of
parameters is used at each horizon.

73

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

REC−KNN
RTI−KNN
DIR−KNN

T = 50

Horizon
B

ia
s2

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
6

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

00
6

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

Figure 4.13: STAR DGP. MSE decomposition of recursive (REC), multi-step recursive (RTI) and direct
(DIR) forecasts with the KNN model.

4.5 Concluding remarks

There have been limited in-depth studies comparing between recursive and direct forecasts gener-
ated with machine learning models. In particular, many studies have focused on the linear setting,
where both the model and the DGP are linear. We conducted an in-depth study that compares
recursive and direct forecasts generated with different learning algorithms for different DGPs.
More precisely, we have decomposed the multi-step mean squared forecast errors into the bias and
variance components, and have analyzed their behavior over the forecast horizon for different time
series lengths.

Overall, the results have shown that the accuracy of recursive and direct forecasts depend on the
different considered factors, including the learning algorithm, the DGP, the time series length
and the forecast horizon. This emphasizes the difficulty of choosing between recursive and direct
forecasts in real-world applications.

When both the model and the DGP are linear, we confirmed that model misspecification plays an
important role in the relative performance between the recursive and direct strategy (Chevillon,
2007).

When both the model and the DGP are nonlinear, we observed a propagation of errors with
recursive forecasts and smaller errors with direct forecasts, especially with long time series.

When the DGP is nonlinear and the nonlinear model can switch to a linear model or if the model is
linear, recursive forecasts have lower errors than direct forecasts especially with short time series.
Also, although they are biased, we found that linear forecasts have lower errors than nonlinear
forecasts particularly with short time series. These results emphasize the fact that weakly nonlinear

74

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
1

2
3

4

2 4 6 8 10

REC−KNN
RTI−KNN
DIR−KNN

T = 50

Horizon
B

ia
s2

0.
0

0.
2

0.
4

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 100

Horizon

M
S

E

0
1

2
3

4

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
0

0.
2

0.
4

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

M
S

E

0
1

2
3

4

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
10

0.
20

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
2

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

Figure 4.14: NAR DGP. MSE decomposition of recursive (REC), multi-step recursive (RTI) and direct
(DIR) forecasts with the KNN model.

time series and/or short time series will favor linear forecasts over nonlinear forecasts, notably due
to overfitting (Teräsvirta, 2006).

Finally, when the model is nonlinear and the DGP is linear, both recursive and direct forecasts will
bring no benefits over linear forecasts since the DGP is linear. Recursive forecasts will suffer from
a higher variance with long time series and long horizons while direct forecasts will have a higher
variance for short time series and long horizons. If the model can switch to a linear model, we
found that recursive forecasts have lower errors than direct forecasts.

In the next chapter, we develop a new forecasting strategy by using the fact that recursive linear
forecasts often provide the best forecasts with short time series even if the DGP is nonlinear, and
choosing between recursive and direct forecasts is not an easy task in real-world applications.

In Chapter 6.3, we also develop a new forecasting strategy that aims at reducing the large variance
of direct forecasts generated with machine learning models, especially for short time series and
long horizons.

For the next two chapters, we also use the following observations: (i) real-world time series are often
short and weakly nonlinear and (ii) overfitting is often the main weakness of forecasts generated
with machine learning models.

75

Chapter 5

Multi-stage forecasting strategies

This chapter is heavily based on the following publications

• S Ben Taieb and RJ Hyndman (2014a). Boosting multi-step autoregressive forecasts. In:
Proceedings of the 31th International Conference on Machine Learning (ICML), pp.109–117

• S Ben Taieb and RJ Hyndman (2014b). “Recursive and direct multi-step forecasting: the best
of both worlds.” Submitted to International Journal of Forecasting (under revision)

5.1 Introduction

In both Sections 3.4 and 4.4, we have seen that the accuracy of recursive and direct forecasts
depends on many interacting factors such as the learning model, the underlying DGP, the time
series length and the forecast horizon.

Although different studies have contributed to better understand under which conditions one
strategy is better than the other, choosing between recursive and direct forecasts still remains a
challenging problem in real-world applications since it involves finding the best trade-off between
bias and estimation variance of the forecasts over the horizon.

In this chapter we aim at developing a new forecasting strategy that avoids choosing between
recursive and direct forecasts, and at the same time has better, or at least close performance to
the best of the recursive and direct forecasts. In particular, rather than treating the recursive and
direct strategies as competitors, we seek to combine the best properties of both strategies.

Some hybrid strategies that combine the architectures of both recursive and direct strategies have
been proposed in the literature (Zhang and Hutchinson, 1994; Sorjamaa and Lendasse, 2006;
Zhang, Zhou, et al., 2013). However, these strategies have received little attention notably due
to the additional complexity or the limited increase in performance compared to the traditional
recursive or direct forecasts.

In the bias and variance analysis of Section 4.4, we have found that recursive linear forecasts often
provide the best forecasts with short time series even if the DGP is nonlinear, notably due to their
reduced variance over the forecast horizon. With longer time series, we have seen that recursive
linear forecasts can suffer from a higher bias component since they cannot capture the nonlinearity,
but still provide a good first approximation. In consequence, recursive linear forecasts can be used
as a starting point and only need some adjustment to capture the potential nonlinearity.

76

Machine learning strategies for multi-step-ahead
time series forecasting

From these observations, we develop multi-stage forecasting strategies, that first generate recursive
linear forecasts, and then adjust these forecasts by modeling the multi-step forecast residuals with
direct nonlinear models at each horizon, called rectification models.

We considered a first strategy, called the rectify strategy, that estimates the rectification models with
the nearest neighbors model, but any nonlinear learning model can be used. Related methods have
been considered in Judd and Small (2000) where “correctors” have been applied to a short-term
predictor to improve long-term prediction of nonlinear models. However, the multi-stage strategies
differ in many ways, notably in terms of the models and estimation method considered, as well as
the evaluation procedure.

Because real-world time series often possess slightly or moderately nonlinear behavior, we often
only need few adjustments of the recursive linear forecasts at each horizon. In particular, by
considering complex nonlinear machine learning models for the rectification models, there is a
chance of overfitting, especially with short time series at long horizons. Therefore, we considered
a second strategy, called the boost strategy, that estimates the rectification models using gradient
boosting algorithms that involve the so-called weak learners.

The boost strategy is particularly useful since it provides a procedure for applying boosting algo-
rithms for multi-step forecasting problems. In fact, although boosting algorithms have proven to be
very powerful prediction algorithms, they have received little attention in the forecasting commu-
nity, except in few recent publications (Assaad, Boné, and Cardot, 2008; Audrino and Bühlmann,
2009; Shafik and Tutz, 2009; Bai and Ng, 2009; Buchen and Wohlrabe, 2011; Robinzonov, Tutz,
and Hothorn, 2012). Furthermore, when boosting algorithms have been applied to forecasting, the
direct strategy has generally been adopted. One advantage of the boost strategy is that it links all
the direct models together with the same unifying base model, thus possibly reducing the forecast
variance.

The multi-stage forecasting strategies have many advantages: (i) they avoid the difficult choice
between recursive and direct forecasts; and (ii) they balance flexibility and robustness since the
linear recursive forecasts serve as a first robust approximation and flexibility is added with the
nonlinear rectification models at each forecast horizon.

In the sections, we evaluate and compare the rectify and the boost strategies with both the recursive
and direct strategies. In Section 5.3, we first apply a bias and variance analysis of the multi-step
mean squared forecast errors of the different strategies, As in Section 4.4. Then, in Section 5.4, we
compare the different strategies with real-world time series from the M3 and NN5 competitions.

5.2 Multi-stage forecasting strategies

Rather than treating the recursive and direct strategies as competitors, we take a different approach
and seek to combine the best properties of both the recursive and direct strategies. We propose a
new strategy that first produce recursive linear forecasts, then adjust these forecasts by modelling
the multi-step forecast errors using a direct strategy with a nonlinear model at each horizon. We
call this new strategy “rectify” because it begins with recursive forecasts and adjusts (or rectifies)
them so they have smaller error.

In other words, we first model the time series using an autoregressive linear model (also called
base model) given by

yt = φ0 +φ1yt−1 + · · ·+φpyt−p︸ ︷︷ ︸
m(zt−1;φ)

+et . (5.2.1)

77

Machine learning strategies for multi-step-ahead
time series forecasting

where φ = [φ0, . . . ,φp] are the parameters of the linear model, that can be for example estimated by
OLS (see Section 2.2.1). For the selection of the lag order p, a time series cross-validation approach
can be adopted, as explained in Section 2.3.5. Then forecasts are produced recursively from the
estimated model: m(h)(zt; φ̂).

At this stage, the forecasts are equivalent to those from the traditional linear AR model and can be
considered as a first approximation of the conditional expectation µt+h|t. Then, we add an additional
stage to adjust for data features which cannot or are not represented by the linear autoregressive
fit. More precisely, we adjust the recursive base forecasts by applying direct nonlinear models to
the (in-sample) residuals from the linear recursive forecasts; that is, we fit the models mh given by

yt −m(h)(zt−h; φ̂)︸ ︷︷ ︸
ỹt

=mh(rt−h;γh) + et,h (5.2.2)

where ỹt is the new response variable of the regression, zt−h = [yt−h, . . . , yt−h−p]′, rt−h =
[yt−h, . . . , yt−h−ph]

′, γh are the parameters of the (direct) rectification models and h = 1, . . . ,H .

In contrast to the parameters of the direct models in (3.3.5), the parameters of the rectification
models γh in (5.2.2) depend on the values of the parameters φ̂. They can be estimated as in (3.3.6),
but with the new response variable ỹt. Then, the final forecasts are obtained for each horizon by
adding the rectifications to the forecasts from the base model: µ̂T+h|T = m(h)(zT ; φ̂) +mh(rT ; γ̂h).
Algorithm 2 summarizes the different steps of the rectify strategy.

Algorithm 2 multi-step-ahead forecasting with the rectify strategy.

{y1, . . . , yT }: Time series with T observations.
H : Forecast horizon.

1: Fit the AR(p) model given in (5.2.1) to obtain m(·; φ̂).
2: for h← 1, . . . ,H do
3: Compute the h-step ahead recursive forecasts from the AR(p) model m(h)(zt−h; φ̂) to obtain

a first (possibly crude) estimate of µt+h|t.
4: Compute the new response variable ỹt as defined in (5.2.2).
5: Learn the (direct) rectification model mh(rt−h; γ̂h) as defined in (5.2.2) from the dataset

D = {(rt−h, ỹt)}Tt=1.
6: end for
7: The final forecasts are given by µ̂T+h|T =m(h)(zT ; φ̂) +mh(rT ; γ̂h) for h = 1, . . . ,H .

It is worth noting that the rectify strategy is different from a simple equally weighted forecast
combination of the recursive and the direct strategy where forecasts are generated as follows:

µ̂T+h|T =
m(h)(zT ; φ̂)

2
+
mh(rT ; γ̂h)

2
(5.2.3)

where φ̂ and γ̂h are the parameters of the models in (3.3.1) and (3.3.5), respectively. In fact,
with the rectify strategy, the parameter values of the (direct) rectification models γ̂h depend on
the parameters of the recursive base model φ̂ and hence, the (direct) rectification models are
complementary to the (recursive) base model. However, with the equally weighted combination in
expression (5.2.3), the forecasts are obtained by a simple average of recursive and direct forecasts,
independently generated.

Compared to the recursive strategy, the rectify strategy does not suffer from the amplification of
errors since recursive forecasts are generated with a linear model. Another advantage of the linear
model is that it allows the underlying process to be estimated in areas where the data is sparse.

78

Machine learning strategies for multi-step-ahead
time series forecasting

An important property of the rectify forecasts is that they are equivalent to the forecasts of the
traditional AR model when there are no rectifications, that is when mh(rT ; γ̂h) = 0. The same
phenomenon happens with the MLP model when it has zero hidden nodes (see Section 2.2.2).

Compared to the direct strategy, the rectification models are linked together as they all operate on
the forecast errors of the same linear model. This will reduce the irregularities that can arise with
independent models, and in turn reduce the forecast variance.

Of course, it is still possible for the rectification models to be different from each other, but these
differences are likely to be much smaller when modelling the residuals from the recursive forecasts
than using a pure direct strategy.

Also, because the linear model will allow part of the signal to be modelled, simpler rectification
models will be needed since the residuals will be less dependent on the conditioning variables and
the function to be estimated will be smoother. Therefore, the rectify strategy is attractive since it
avoids having too complex direct models as with the pure direct strategy.

Finally, in the extreme case where the recursive forecasts are null, that is m(h)(zT ; φ̂) = 0, we can see
in (5.2.2) that the rectify strategy is equivalent to the direct strategy.

When the direct rectification models in expression (5.2.2) are nonlinear machine learning models,
they can potentially include high-order interaction terms between the lagged variables in rt−h.
Having complex nonlinear rectification models can induce a large variance in the final forecasts
of the rectify strategy. Of course, the model selection procedure can select a small value of
the lag orders ph which will implicitly induce a lower-order interaction and a smaller variance.
Nevertheless, it could still happen that a bad model is selected with noisy data.

Instead of applying one potentially high-variance rectification, we propose a second strategy that
apply several small-variance rectifications at each horizon where the number of rectifications needs
to be selected. In particular, we propose to boost the base forecasts by applying a gradient boosting
procedure (see Section 2.2.4) on the residuals from the linear recursive model. We call it the boost
strategy.

The small-variance adjustments are ensured by the so-called weak learner; that is a learner with
large bias relative to variance (see Section 2.2.4). Also, since we expect real-world time series
to depend on lower-order interactions, we only allow bivariate interactions between the input
variables for each model.

So, the rectifications models mh in (5.2.2) can be written as a sum of small-variance adjustments or
boosting components as follows:

yt −m(h)(zt−h; φ̂)︸ ︷︷ ︸
ỹt

=
Jh∑
j=1

ν · l[j](yt−a, yt−c;ψ) + et,h, (5.2.4)

where Jh is the number of boosting iterations at horizon h, ν · l[j] is the weak adjustment at iteration
j with 0 < ν ≤ 0 being a shrinkage factor, and yt−a, yt−c ∈ rt−h.

One should note that the weak adjustments in (5.2.4) are ensured to be weak because of three
reasons: (i) the shrinkage factor ν shrinks the estimate towards zero, (ii) the restriction to bivariate
interactions between variables, and (iii) the weak learner l(·;ψ).

Algorithm 3 gives the different steps of the boost strategy to generate H-step forecasts for a given
time series {y1, . . . , yT } with T observations. We assume the number of boosting iterations at each
horizon [J1, . . . , JH] has already been selected and is given.

79

Machine learning strategies for multi-step-ahead
time series forecasting

Algorithm 3 Multi-step forecasting with the boost strategy

{y1, . . . , yT }: Time series with T observations.
H : Forecasting horizon.
{l1(yt−1, yt−2), . . . , lB(yt−d+1, yt−d)}: set of B =

(d
2
)

base-learners where d is the maximum lag order
allowed.
{J1, . . . , JH }: number of boosting iterations for each horizon.
0 < ν ≤ 1: shrinkage factor.

1: Fit the AR(p) model given in (5.2.1) to obtain m(·; φ̂).
2: for h← 1, . . . ,H do
3: Compute the h-step ahead recursive forecasts from the AR(p) model m(h)(zt−h; φ̂) to obtain

a first (possible crude) estimate of µ̂t+h|t.

Denote by F̂[j]
h the estimate of the conditional mean at horizon h for iteration j, and let

F
[0]
h =m(h)(zt−h; φ̂) be the estimate for iteration 0.

4: for j← 1, . . . , Jh do
5: Compute the negative gradient of the quadratic loss function evaluated at the function

values of the previous iteration F[j−1]
h :

u
[j]
t = −

1
2∂(yt −Fh)2

∂Fh

∣∣∣∣∣
Fh=F[j−1]

h

= −(yt −F
[j−1]
h) , t = 1, . . . ,T .

6: for b← 1, . . . ,B do
7: Fit the bth base learner with the training set {(rt−h,u

[j]
t)}Tt=1, which gives l[j]b (yt−a, yt−c; γ̂),

that will be also denoted as l̂[j]b (yt−a, yt−c).
8: end for
9: Select the base-learner l̂[j]b∗ (yt−a, yt−c) with the largest contribution to the fit, i.e. the base-

learner that minimizes the sum of squared errors:

b∗ = argmin
b

∑T
t=1(u[j]

t − l̂
[j]
b (yt−a, yt−c))2

10: Update the current function estimate by adding the best base-learner estimate of the current
iteration (j) to the function estimate of the previous iteration (j − 1):

F̂
[j]
h = F̂[j−1]

h + ν · l̂[j]b∗ (yt−a, yt−c)
11: end for
12:

13: end for
14: The final forecasts are given by [µ̂T+1|T , . . . , µ̂T+H |T] where µ̂T+h|T = F̂[Jh]

h =m(h)(zT ; φ̂) +
∑Jh
j=1ν ·

l[j](yT−a, yT−c; γ̂)

80

Machine learning strategies for multi-step-ahead
time series forecasting

Algorithm 3 is an extension of the component-wise boosting algorithm (see Algorithm 1 in page
24) to the problem of multi-step forecasting. In particular, we can see that the boosting procedure
is applied on the residuals from the AR(p) model (see line 3) while in Algorithm 1 (page 24), the
mean is used as first approximation (see line 1).

The final forecasts are composed of two parts: the AR(p) model and a set of weak rectifications
(line 14). We can see that we can have a different number of boosting iterations at each horizon. In
particular, if Jh = 0 then the forecasts at horizon h are not adjusted and are reduced to the forecasts
of the traditional AR(p) forecasts.

The boost strategy depends on different parameters: (i) the number of boosting iterations, (ii)
the weak learner and (iii) the shrinkage factor. The number of boosting iterations J is the main
hyperparameter that needs to be selected and is particularly important as it controls the trade-off
between the bias and variance of the estimation (see Section 2.2.4). Cross-validation methods can
be used to select the best number of iterations. The weak learner estimates are generally obtained
with a least square type method. The shrinkage factor is generally fixed to a small value, such as
ν = 0.1.

In our implementation of the boost strategy, we have considered P-splines as in Schmid and Hothorn
(2008). P-splines require the selection of two additional parameters: the number of knots and the
smoothing parameter or the associated degree of freedom (see Section 2.2.1). However, Ruppert
(2002) has shown that the number of knots does not have much effect on the estimation provided
enough knots are used. The weakness of the P-spline is measured by its degrees of freedom (df).
Bühlmann and Yu (2003) and Schmid and Hothorn (2008) proposed that the smoothing parameter
be set to give a small value of df (i.e., df ∈ [3,4]), and that this number be kept fixed in each boosting
iteration.

81

Machine learning strategies for multi-step-ahead
time series forecasting

5.3 Bias and variance analysis

As in Section 4.4, we will use the terminology described in Section 4.3 to compare the rectify and
boost strategies with both the recursive and direct strategies from the perspective of the bias and
variance components of the multi-step mean squared forecast errors. In addition, we will also
compare the rectify and boost strategies with averaging strategies, i.e. strategies that compute a
simple average of recursive and direct forecasts, as in expression (5.2.3).

As explained in Section 4.3, we will consider four different scenarios depending on whether the
DGP and the learning model of the recursive and direct strategies are linear or nonlinear. Of
course, for the rectify and the boost strategies, the base model is always linear and the rectification
models are always nonlinear. For each scenario, we will perform a theoretical bias and variance
analysis for the case of two-step ahead forecasts. The general case of h-step ahead forecasts will be
considered using Monte Carlo simulations.

Let us first write the two-step ahead forecasts of the rectify and boost strategies using the terminol-
ogy defined in Section 4.3.1. To simplify the notations, we will remove the dependence on the size
of the time series T .

Forecasts of the rectify strategy. In the first stage, a linear autoregressive model is fitted as in
(4.4.3) and two-step ahead forecasts are computed recursively as in (4.4.4). In the second stage, the
residuals of the linear model for two-step ahead forecasts are modeled using a direct rectification
model. The final forecasts are composed of the two-step ahead forecasts from the linear model and
the adjustments from the rectification model as follows.

g(xt; [φ̂; γ̂];2) (5.3.1)

= (φ0 +φ1φ0) + (φ2
1 +φ2)yt + · · ·+ (φ1φp−1 +φp)yt−p+2 + (φ1φp)yt−p+1 + (φ1 + 1)η(φ)εη0

+m2(rt;γ) + η(rt;γ)εη1

where where εη0
and εη1

are the stochastic components of the variability term for the linear base
model and the rectification model respectively.

Forecasts of the boost strategy. Similarly to the rectify strategy, the final forecasts are composed
of the recursive and direct components, but the direct adjustments are computed with a boosting
procedure, as follows

g(xt; [φ̂; γ̂];2) (5.3.2)

= (φ0 +φ1φ0) + (φ2
1 +φ2)yt + · · ·+ (φ1φp−1 +φp)yt−p+2 + (φ1φp)yt−p+1 + (φ1 + 1)η(φ)εη0

+
J2∑
j=1

ν · [l[j](yt−a, yt−c;γj) + ηj(yt−a, yt−c;γj) ∗ εηj︸ ︷︷ ︸
l[j](yt−a,yt−c;γ̂j)

] (5.3.3)

where φ = [φ1, . . . ,φp], γ = [γ1, . . . ,γJ] and a,c ∈ {1, . . . ,p′} where p′ is the maximum lag order
allowed for the rectification models.

Expression (5.3.3) can be also written in a different form where instead of summing over the
iterations, it is written as a sum over the different bivariate interactions. In other words, we have

J2∑
j=1

ν · [l[j](yt−a, yt−c;γj) + ηj(yt−a, yt−c;γj) ∗ εηj]

82

Machine learning strategies for multi-step-ahead
time series forecasting

=
∑
(u,v)

∑
Suv={j |a=u∧c=v}

ν[l[j](yt−a, yt−c;γj) + ηj(yt−a, yt−c;γj) ∗ εηj]

=
∑
(u,v)

Muv(yt−u , yt−v ;γuv) + ηuv(yt−u , yt−v ;γuv) ∗ εηuv︸ ︷︷ ︸
Muv(yt−u ,yt−v ;γ̂uv)

(5.3.4)

where (u,v) ∈ {1, . . . ,p} × {1, . . . ,p} and γ̂uv = {γ̂j |j ∈ Suv}.

For the expression of the variance component, we will use the representation given in expression
(5.3.3) while for the bias component, we will use the representation given in (5.3.4).

In the Monte Carlo simulations, the rectify strategy with the KNN model will be denoted as
RFY-KNN, while the boost strategy will be denoted as RFY-BST2. The averaging strategies that
compute a simple average of REC-M1 and DIR-M2 will be denoted AVG-M1-M2, where where M1
and M2 can be any learning model such as LIN, MLP, KNN or BST2.

Finally, when comparing the rectify and the boost strategies with the averaging strategy, we will
also decompose the total variance into the variances of each model plus the covariances as described
in Section 4.2.1.

5.3.1 Scenario A: Linear model and linear DGP

We compare the rectify and boost strategies with the recursive and direct linear forecasts when the
DGP is linear. The expression (4.3.1) for the recursive and direct strategies are given by expressions
(4.4.7) and (4.4.11), respectively.

For the rectify strategy, we compute expression (4.3.1) using expression (5.3.1) as follows

BRFY
2 (xt) +V RFY

2 (xt) (5.3.5)

=
[(

(ϕ0 +ϕ1ϕ0) + (ϕ2
1 +ϕ2)yt + · · ·+ (ϕ1ϕd−1 +ϕd)yt−d+2 + (ϕ1ϕd)yt−d+1

)
−
(
(φ0 +φ1φ0) + (φ2

1 +φ2)yt + · · ·+ (φ1φp−1 +φp)yt−p+2 + (φ1φp)yt−p+1

)
−m2(rt;γ)]2

+ (φ1 + 1)2η(φ)2 + η(rt;γ)2

where we assume that εη0
⊥ εη1

, that is the variability terms of the linear base model and the
nonlinear rectification model are uncorrelated.

For the boost strategy, we compute expression (4.3.1) using expressions (5.3.2) and (5.3.4) as
follows

BRFY
2 (xt) +V RFY

2 (xt) (5.3.6)

=
[(

(ϕ0 +ϕ1ϕ0) + (ϕ2
1 +ϕ2)yt + · · ·+ (ϕ1ϕd−1 +ϕd)yt−d+2 + (ϕ1ϕd)yt−d+1

)
−
(
(φ0 +φ1φ0) + (φ2

1 +φ2)yt + · · ·+ (φ1φp−1 +φp)yt−p+2 + (φ1φp)yt−p+1

)
−
∑
uv

Muv(yt−u , yt−v ;γuv)

2

+ (φ1 + 1)2η(φ)2 +
J∑
j=1

ηj(yt−u , yt−v ;γj)2

τ2︸ ︷︷ ︸∑
uv ηuv(yt−u ,yt−v ;γuv)2

83

Machine learning strategies for multi-step-ahead
time series forecasting

where ν = 1
τ and we assumed εη0

⊥ εηj for all j, that is the variability terms of the linear model and
the boosting components are uncorrelated, and εηj ⊥ εηj′ for j , j ′, that is the variability terms of
the different boosting components are also uncorrelated.

Let us consider the case of a well-specified linear model (i.e. p = d) for the recursive and direct
strategies as well as for the base model of the rectify and boost strategies. In that case, we have
seen in Section 4.4.1 that the recursive strategy benefits from more efficient parameter estimates
than the direct strategy.

For the rectify and the boost strategies, the direct rectification models will not bring any benefit
to the recursive base forecasts from a well-specified model since the residuals from this model
will essentially contain noise. In consequence, both the bias and variance components will be
affected by the additional rectification terms as can be seen in (5.3.5) and (5.3.6). More precisely,
the linear terms will disappear and the nonlinear terms will remain in both the bias and variance
components.

We would like the rectification terms to be small and ideally to be equal to zero. This will make the
rectify and boost forecasts equivalent to the recursive linear forecasts, that generate better forecasts
in that setting.

However, in practice, the rectification terms will rarely be exactly equal to zero especially when
they are estimated from a short and noisy time series. In consequence, we expect the rectify and
boost forecasts to have a higher error than the recursive linear forecasts due to these additional
terms.

The increase in error will depend on the the complexity of the rectification models over the forecast
horizon. In particular, if the rectification models of the rectify strategy include many lagged
variables to interact in a nonlinear way, we expect the error increase to be high. The boost strategy
can be a better alternative since it limits the complexity of the rectification models by only allowing
bivariate interactions between the lagged variables and by benefiting from the reduced variance of
the weak components.

Direct forecasts are expected to have a higher variance than recursive forecasts in this scenario,
particularly for long horizons. However, because the rectification models of the rectify and the
boost strategies are allowed to be nonlinear, they can have a higher variance than direct linear
forecasts. Of course, the rectify and boost forecasts may generate better forecasts than direct linear
forecasts if they have no rectification terms, or equivalently, if the forecasts becomes identical to
the recursive linear forecasts.

Recall however that a well-specified model is not a realistic assumption since a model is an
approximation of the reality and thus is almost always misspecified.

Let us consider the case where the recursive and direct forecasts are generated with a misspecified
linear model, and the linear base model of the rectify and boost strategies is also misspecified. As
in Section 4.4.1, we will assume the misspecification is due to omitted lagged variables.

We have seen in Section 4.4.1 that with a misspecified linear model, recursive forecasts are biased
and direct forecasts are more robust to misspecification since the models are selected by minimizing
h-step ahead forecasts directly.

Because recursive forecasts from a misspecified base model are biased, the residuals from the
base model will contain the unmodeled signal. The rectification models of the rectify and boost
strategies will be able to adjust these forecasts and reduce the bias, provided their inputs include
the omitted variables.

84

Machine learning strategies for multi-step-ahead
time series forecasting

However, since the DGP is linear, the signal contained in the residuals is expected to be small.
Fitting these residuals with nonlinear direct models can significantly increase the total variance
especially with short time series. Again, the boost strategy can be a better alternative in this case
due to the possibly reduced variance of the rectification models.

Direct linear forecasts are known to be more robust to misspecification than recursive forecasts. In
addition, because of the reduced variance of the linear models, direct linear forecasts are expected
to provide smaller errors than the rectify and the boost strategies which can suffer from the higher
variance of the nonlinear rectification models.

Let us now consider Monte Carlo simulations for the general case of h-step ahead forecasts. As
in Section 4.4.1, we will consider both a well-specified (LIN) and a misspecified (LINMIS) linear
model. In particular, RFY-KNN and RFY-BST2 will refer to the strategies that involve the LIN
model while RFYMIS-KNN and RFYMIS-BST2 will refer to the strategies that involve the LINMIS
model. Also, for both RFY and RFYMIS strategies, the nonlinear rectification models will include
the true lag order in the set of possible lags. The results are given in Figure 5.1 where we have also
included the results for the recursive and direct strategies, from Figure 4.3.

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

REC−LINMIS
DIR−LINMIS
REC−LIN
DIR−LIN
RFY−KNN
RFYMIS−KNN
RFY−BST2
RFYMIS−BST2

T = 50

Horizon

B
ia

s2

0.
00

0.
15

0.
30

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 50

Horizon
B

ia
s2

+
V

ar
ia

nc
e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
00

0.
10

0.
20

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
10

0.
20

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0.
10

0.
20

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

2 4 6 8 10

Figure 5.1: AR DGP. MSE decomposition of rectify and boost forecasts with a well-specified linear
base model (RFY-KNN and RFY-BST2, respectively), and a misspecified linear base model
(RFYMIS-KNN and RFYMIS-BST2, respectively). The results of Figure 4.3 are also included.

Let us first consider a well-specified model and compare REC-LIN and DIR-LIN with RFY-KNN
and RFY-BST2. In the last column of Figure 5.1, we can see that the RFY strategies have higher
errors for all values of T . As previously explained, this is particularly due to the higher variance of
the nonlinear rectification terms when the DGP is linear, as can be seen in the third column.

If we compare RFY-KNN with RFY-BST2, we can see that RFY-BST2 has smaller errors than RFY-
KNN for T = 50 and T = 100. This can be explained by the lower variance of the rectification terms
for RFY-BST2. For T = 400, RFY-KNN and RFY-BST2 have a comparable performance.

85

Machine learning strategies for multi-step-ahead
time series forecasting

If we consider a misspecified linear model, we can see in the last column that the difference
between RFYMIS and RFY is small. No difference is visible in terms of the variance component. A
small difference is visible in terms of the bias component for T = 100 and T = 400 that shows the
advantage of the well-specified model over the misspecified model, but not for T = 50.

By comparing REC-LINMIS with RFYMIS strategies, we can see that although the linear model is
misspecified, recursive forecasts have smaller errors than RFYMIS strategies. This makes sense
since forecasts from a misspecified linear model are expected to have smaller errors than forecasts
which include nonlinear terms with a higher variance. However, in the second column, we can see
that the bias component of the RFYMIS strategies is between the bias component of REC-LINMIS
and REC-LIN. This shows that the bias has effectively been reduced by the rectification models.
However, the reduction in bias is smaller than the increase in variance.

We can make the same conclusion in terms of the variance component by comparing DIR-LINMIS
with RFYMIS strategies. In terms of the bias component, the RFYMIS strategies have smaller
errors for the first few horizons and mixed results for longer horizons. So, even if the models are
misspecified, their linearity reduces significantly the variance and makes them more attractive
than RFY strategies when the DGP is linear.

All in all, this scenario is not favorable for the rectify and the boost strategies since they are
penalized by the additional complexity induced by the nonlinear rectification terms. Between the
rectify and the boost strategies, the boost strategy is more attractive in this scenario notably for the
reduced variance of the rectification terms.

Although in this scenario the RFY strategies have higher errors than REC-LIN, we will see that the
RFY strategies are very attractive compared the REC and DIR strategies with nonlinear models, in
other scenarios.

86

Machine learning strategies for multi-step-ahead
time series forecasting

5.3.2 Scenario B: Linear model and nonlinear DGP

We compare the rectify and boost strategies with recursive and direct linear forecasts when the DGP
is nonlinear. The expression (4.3.1) for the recursive and direct strategies are given by expressions
(4.4.14) and (4.4.17), respectively.

For the rectify strategy, we compute expression (4.3.1) using expression (5.3.1) as follows

BRFY
2 (xt) +V RFY

2 (xt) (5.3.7)

=

f (f (xt), yt , . . . , yt−d+2) +
1
2
σ2fx1x1︸ ︷︷ ︸

µt+2|t

(5.3.8)

−
(
(φ0 +φ1φ0) + (φ2

1 +φ2)yt + · · ·+ (φ1φp−1 +φp)yt−p+2 + (φ1φp)yt−p+1

)
−m2(rt;γ)]2 (5.3.9)

+ (φ1 + 1)2η(φ)2 + η(rt;γ)2 (5.3.10)

For the boost strategy, we compute expression (4.3.1) using expressions (5.3.2) and (5.3.4) as
follows

BRFY
2 (xt) +V RFY

2 (xt) (5.3.11)

=

f (f (xt), yt , . . . , yt−d+2) +
1
2
σ2fx1x1︸ ︷︷ ︸

µt+2|t

(5.3.12)

−
(
(φ0 +φ1φ0) + (φ2

1 +φ2)yt + · · ·+ (φ1φp−1 +φp)yt−p+2 + (φ1φp)yt−p+1

)
−
∑
uv

Muv(yt−u , yt−v ;γuv)

2

(5.3.13)

+ (φ1 + 1)2η(φ)2 +
J∑
j=1

ηj(yt−a, yt−c;γj)2

τ2 (5.3.14)

As explained in Section 4.4.2, because the DGP is nonlinear, both recursive and direct linear
forecasts are biased since they cannot capture the nonlinearity fx1x1

of the function f . In particular,
the bias will be high if |fx1x1

| is large; that is when f has large curvatures or if p , d.

However, because the rectify and the boost strategies include direct nonlinear terms, they can
model nonlinear functions. In particular, if we compare expressions (5.3.8)-(5.3.9) and (5.3.12)-
(5.3.13) with expressions (4.4.15)-(4.4.16), we can see that the role of the nonlinear rectification
terms is to remove or decrease the bias of the recursive linear base forecasts.

The amount of rectification required will depend on the nonlinearity of the function f . If the DGP
is weakly nonlinear, the recursive linear forecasts can already provide a good first approximation
and few rectifications will be required for the non-captured (weak) nonlinearity. If the DGP is
strongly nonlinear, then more rectifications can be required.

Because he rectify strategy do not impose any restriction on the rectification models, it can handle
any nonlinear function provided the rectification models are flexible enough. However, the boost

87

Machine learning strategies for multi-step-ahead
time series forecasting

strategy only allow bivariate interactions between lagged variables for the rectification models. As
a result, if the function includes higher-order interactions, the boost strategy will provide biased
forecasts, but the bias is expected to be smaller than the bias of linear models.

The rectify and boost strategies add a rectification term to the first (low-variance) approximation to
reduce the bias of the recursive base forecasts. By doing so, an additional variance term is added in
top of the variance of the base forecasts as can be seen in (5.3.10) and (5.3.14). In contrast, recursive
and direct linear forecasts have only one variance term that will be typically low. Although the DGP
is nonlinear, a lower variance can still induce a smaller MSE if the bias is not too high, especially
with short time series. One advantage of the boost strategy is that it include nonlinear terms in the
forecasts and, at the same time, limit overfitting with the reduced variance of the weak components
and the limitation to bivariate interactions.

Let us now consider Monte Carlo simulations for the general case of h-step ahead forecasts. Figure
5.2 gives the results for the STAR DGP.

T = 50

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

REC−LIN
DIR−LIN
RFY−KNN
RFY−BST2

T = 50

Horizon

B
ia

s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
8

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
6

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
2

0.
00

4

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
0

2 4 6 8 12

Figure 5.2: STAR DGP. MSE decomposition of rectify (RFY-KNN) and boost (RFY-BST2) forecasts. The
results for linear recursive (REC-LIN) and direct (DIR-LIN) forecasts are also included.

In the second column of Figure 5.2, we can clearly see that the RFY strategies have a smaller bias
component than REC-LIN and DIR-LIN, which shows the positive contribution of the rectification
models of the RFY strategies. We also see that the relative decrease in bias gets larger with longer
time series, i.e. with larger value of T .

Naturally, the decrease in bias has also induced an increase in variance as can be seen in the third
column of Figure 5.2. In particular, we can see that REC-LIN and DIR-LIN have a lower variance
than the RFY strategies, expect for T = 50 where DIR-LIN has a comparable bias component to the
RFY strategies.

The last column of Figure 5.2 allows us to see which strategy has the best trade-off between bias and
variance components. For a short time series as T = 50, we can see that it is hard to beat REC-LIN

88

Machine learning strategies for multi-step-ahead
time series forecasting

even if the DGP is nonlinear. This is due to the huge decrease in variance (without a too much
increase in bias) for REC-LIN, particularly at long horizons. For longer time series, the performance
of both REC-LIN and DIR-LIN reduces compared to the RFY strategies. For T = 100, we observe
higher errors for REC-LIN and DIR-LIN at short horizons due to their higher bias component. For
T = 400, the RFY strategies have smaller errors compared to REC-LIN and DIR-LIN with RFY-BST2
dominating all the strategies consistently over the horizon.

For the the NAR DGP, in the second column of Figure 5.3, we do not observe a large reduction in
the bias component of RFY strategies compared to REC-LIN and DIR-LIN, as with the STAR DGP
in Figure 5.2. This suggests that the NAR DGP is a weakly nonlinear process compared to theSTAR
DGP. With RFY-KNN, we can even see a high bias which suggests that the direct KNN rectification
models are not well suited for the NAR DGP. This also shows that, in addition to reducing the
variance, RFY-BST2 can also reduce the bias compared to RFY-KNN if an appropriate weak learner
is used.

Concerning the variance component, the third column of Figure 5.3 shows the lower variance of
REC-LIN as in Figure 5.3 with the STAR DGP. Also, we can see that the nonlinear rectification
terms of the RFY strategies have not reduced the bias of REC-LIN, but instead have only increased
the total variance.

If we compare the third and the fourth column of Figure 5.3, we see that they are very similar. This
suggests that the variance component is dominating the bias all over the horizons. This can also be
seen by analyzing the scale of the second and the third columns. Finally, we see that the relative
performance of RFY-BST2 compared to REC-LIN and DIR-LIN increases with the time series length
T while RFY-KNN is dominated by the other strategies due to its higher bias, particularly for
T = 100 and T = 400.

T = 50

Horizon

M
S

E

0
1

2
3

4

2 4 6 8 10

REC−LIN
DIR−LIN
RFY−KNN
RFY−BST2

T = 50

Horizon

B
ia

s2

0.
00

0.
10

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 100

Horizon

M
S

E

0
1

2
3

4

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
00

0.
03

0.
06

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
2

0.
4

0.
6

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

0.
4

0.
6

2 4 6 8 10

T = 400

Horizon

M
S

E

0
1

2
3

4

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
02

0.
04

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0.
10

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0.
10

0.
20

2 4 6 8 10

Figure 5.3: NAR DGP. MSE decomposition of rectify (RFY-KNN) and boost (RFY-BST2) forecasts. The
results for linear recursive (REC-LIN) and direct (DIR-LIN) forecasts are also included.

89

Machine learning strategies for multi-step-ahead
time series forecasting

5.3.3 Scenario C: Nonlinear model and linear DGP

In this section, we compare the rectify and boost strategies with the recursive and direct nonlinear
forecasts when the DGP is linear.

If the nonlinear models of the recursive and direct strategies switch to linear models then this
scenario becomes equivalent to scenario A (Section 5.3.1). In that case, because the DGP is linear,
the ideal configuration for the rectify and boost forecasts is to have no rectification components, so
that they are equivalent to recursive linear forecasts.

Let us consider the case where the nonlinear models of the recursive and direct strategies do not
switch to linear models. The expression (4.3.1) for the two-step ahead bias and variance components
is given by expression (5.3.5) and (5.3.6) for the rectify and the boost strategy, respectively.

If we compare expressions (5.3.5) and (5.3.6) with expression (4.4.19), we see that the rectify and
boost forecasts do not suffer from the amplification of errors as nonlinear recursive forecasts since
the recursive base forecasts are generated by a linear model. Of course, the direct rectifications
will increase the variance of the linear base forecasts but we expect this variance to be smaller than
the variance induced by the amplification of errors of nonlinear recursive forecasts, particularly
when the model m produces a function that has large variations (i.e. mz1

and mz1z1
are large in

magnitude).

If we compare expressions (5.3.5) and (5.3.6) with expression (4.4.24), we can see that they both
contain direct nonlinear terms.

However, because the rectify and boost strategies remove the signal modelled by the linear model,
the direct nonlinear rectification terms are expected to be simpler than the nonlinear terms
of the direct strategy. In particular, with a linear DGP, recursive linear forecasts plus direct
nonlinear rectification terms are expected to have a lower variance than only direct nonlinear
terms. Furthermore, the nonlinear rectification terms of the the boost strategy can benefit from a
reduced variance due to the weak components and the limitation to bivariate interactions.

Let us now consider Monte Carlo simulations for the general case of h-step ahead forecasts. We
compare RFY-KNN with REC-KNN and DIR-KNN in Figure 5.4, where the results for the LIN and
the MLP models are also included for comparison. The same information is given in Figure 5.5 to
compare RFY-BST2 with REC-BST2 and DIR-BST2.

In Figures 4.6 and 4.7, we have seen that REC-LIN and DIR-LIN have the best performance,
followed by REC-MLP and DIR-MLP, which are followed by REC-KNN and DIR-KNN. In the last
column of Figure 5.4, we see that RFY-KNN has smaller errors than REC-KNN and DIR-KNN
as well as REC-MLP and DIR-MLP. In particular, RFY-KNN is in the middle between forecasts
generated with the LIN model and both the KNN and MLP models. This suggests that although
RFY-KNN suffer from higher errors than REC-LIN due to useless rectifications (since the DGP is
linear), it still has lower errors than recursive and direct nonlinear forecasts. Finally, by comparing
RFY-KNN with REC-KNN and DIR-KNN, we can see the benefits of the linear base forecasts.

In the last column of Figure 5.5, we can make the same observations as in Figure 5.4. In fact, we
see that RFY-BST2 has smaller errors than recursive and direct forecasts from both the BST2 and
the MLP models. Also, RFY-BST2 is in the middle between forecasts generated with the LIN model
and both the BST2 and MLP models.

Overall, the RFY strategies achieve a good trade-off between the bias and variance components
compared to recursive and direct nonlinear forecasts. Also, the smaller error of the RFY strategies
compared to REC-MLP suggests that the RFY strategies are also competitive with recursive forecasts
generated with a nonlinear model that can switch to a linear model such as the MLP model.

90

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

REC−LIN
DIR−LIN
REC−MLP
DIR−MLP
REC−KNN
DIR−KNN
RFY−KNN

T = 50

Horizon
B

ia
s2

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0
1

2
3

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
0

0.
2

0.
4

0.
6

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

Figure 5.4: AR DGP. MSE decomposition of rectify forecasts (RFY-KNN). The results for recursive (REC)
and direct (DIR) forecasts with the LIN, MLP and KNN models are also included.

5.3.4 Scenario D: Nonlinear model and nonlinear DGP

We compare the rectify and boost strategies with recursive and direct nonlinear forecasts when the
DGP is nonlinear.

As in Scenario B (Section 5.3.2), the linear base forecasts of the rectify and boost strategies will
generate biased forecasts since the DGP is nonlinear, and the direct nonlinear rectification models
will remove or decrease the bias by considering nonlinear rectification terms over the forecast
horizon. The difference with scenario B is that the recursive and direct strategies generate forecasts
with a nonlinear model.

The expression (4.3.1) for the two-step ahead bias and variance components of the rectify and the
boost strategy are given in expressions (5.3.7) and (5.3.11), respectively.

Let us first compare the rectify and the boost strategies with the recursive strategy by comparing
expressions (5.3.7) and (5.3.11) with expression (4.4.26). In Section 4.4.4, we have seen that
nonlinear recursive forecasts are asymptotically biased and suffer from an amplification of errors,
particularly with highly nonlinear models.

Because the rectify and boost strategies compute recursive linear forecasts, they do not suffer
from the amplification of errors as explained in Section 4.4.3. Also, although the recursive linear
forecasts are biased when the DGP is nonlinear, we have seen in Scenario B that they can provide
good first approximations especially for a weakly nonlinear DGP. Nevertheless, the rectify and
the boost strategies will add additional rectification terms to remove or decrease the bias of the
recursive linear forecasts, as can be seen in expressions (5.3.9) and (5.3.13).

Although the additional rectification terms of the rectify and boost strategies will increase the total
variance, as can be seen in expressions (5.3.10) and (5.3.14), the amplified variance of nonlinear

91

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

REC−LIN
DIR−LIN
REC−MLP
DIR−MLP
REC−BST2
DIR−BST2
RFY−BST2

T = 50

Horizon
B

ia
s2

0.
0

0.
5

1.
0

1.
5

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
0

0.
4

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
10

0.
20

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
2

0.
4

0.
6

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

0.
4

0.
6

2 4 6 8 10

Figure 5.5: AR DGP. MSE decomposition of boost forecasts (RFY-BST2). The results for recursive (REC)
and direct (DIR) forecasts with the LIN, MLP and BST2 models are also included.

recursive forecasts, given in (4.4.29)-(4.4.30), is expected to be much higher. In addition, the boost
strategy will have an even smaller increase in variance notably due the limitation to bivariate
interactions.

We now compare the rectify and the boost strategies with the direct strategy by comparing (5.3.7)
and (5.3.11) with expression (4.4.31). In Section 4.4.4, we have seen that the direct strategy does
not suffer from the amplification of errors as with the recursive strategy. However, because it
selects a different model for each horizon, it can have a high variance at long horizons, especially
with short time series.

The rectify and boost strategies also do not suffer from the amplification of errors and can have
an arbitrarily small bias provided the rectification models are flexible enough to the estimate
the residuals from the base forecasts. Also, because the base model has already modeled part
of the regression function, we expect the residuals from the base model to be smoother and
have less dependence on the inputs rt (see (5.2.2)). A reduced dependence on the inputs allows
simpler models with fewer lagged variables (less variables in rt) to be fitted. For example, with
nonparametric models, reduced dependence on the inputs allows larger bandwidth. In other words,
with a nonlinear DGP, recursive linear forecasts adjusted by simple nonlinear rectification terms is
expected to have a lower variance than direct nonlinear forecasts, i.e. both (5.3.10) and (5.3.14) are
expected to be smaller than (4.4.31).

Let us now consider Monte Carlo simulations for the general case of h-step ahead forecasts. We will
compare RFY-KNN with REC-KNN and DIR-KNN, and RFY-BST2 with REC-BST2 and DIR-BST2.

The results for the STAR DGP are given in Figures 5.6 and 5.7, for RFY-KNN and RFY-BST2,
respectively. We also include the results for the recursive and direct forecasts generated with the
LIN and the MLP models.

92

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

REC−LIN
DIR−LIN
REC−MLP
DIR−MLP
REC−KNN
DIR−KNN
RFY−KNN

T = 50

Horizon
B

ia
s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
8

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

01
5

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

Figure 5.6: STAR DGP. MSE decomposition of rectify forecasts (RFY-KNN). The results for recursive
(REC) and direct (DIR) forecasts with the LIN, MLP and KNN models are also included.

In the last column of Figure 5.6, we can see for T = 50 and T = 100 that RFY-KNN has smaller
errors than both REC-KNN and DIR-KNN. For T = 400, RFY-KNN has comparable performance
than DIR-KNN and better performance than REC-KNN for long horizons.

Compared to REC-MLP, RFY-KNN has smaller errors for long horizons but larger errors for short
horizons. DIR-MLP and RFY-KNN have a comparable performance for T = 50 and T = 100 but
DIR-MLP outperforms all strategies for T = 400.

Finally, RFY-KNN has performance close to REC-LIN for short horizons and smaller errors than
DIR-LIN for T = 50. For T = 100, the three strategies have close performances over the horizon. For
T = 400, RFY-KNN has smaller error than both REC-LIN and DIR-LIN, especially at short horizons.
The same behavior can be observed with RFY-BST2 in Figure 5.7.

The results for the NAR DGP are given in Figures 5.8 and 5.9, for RFY-KNN and RFY-BST2,
respectively.

In the last column of Figure 5.8, we can see that RFY-KNN has smaller errors than REC-KNN
consistently over the horizon. Compared to DIR-KNN, it has smaller errors for short horizons
and comparable performance for long horizons. In the second column, we can see that RFY-KNN
has significantly reduced the bias component at short horizons compared to both REC-KNN and
DIR-KNN. The third column also shows that RFY-KNN has a lower variance than REC-KNN
consistently over the horizon and a lower variance than DIR-KNN for short horizons.

For T = 50 and T = 100, RFY-KNN outperforms both REC-MLP and DIR-MLP, while for T = 400,
they have a comparable performance. The third column shows that the better performance of
RFY-KNN is due to its lower variance component.

93

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

REC−LIN
DIR−LIN
REC−MLP
DIR−MLP
REC−BST2
DIR−BST2
RFY−BST2

T = 50

Horizon
B

ia
s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

02
0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
8

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

01
5

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0.
02

2 4 6 8 12

Figure 5.7: STAR DGP. MSE decomposition of boost forecasts (RFY-BST2). The results for recursive
(REC) and direct (DIR) forecasts with the LIN, MLP and BST2 models are also included.

Except for T = 50, both REC-LIN and DIR-LIN have smaller errors than RFY-KNN consistently
over the horizon. Finally, in contrast to REC-KNN and DIR-KNN, RFY-KNN does not have a huge
difference in performance with REC-LIN and DIR-LIN. The same behavior can be observed with
RFY-BST2 in Figure 5.9.

94

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

REC−LIN
DIR−LIN
REC−MLP
DIR−MLP
REC−KNN
DIR−KNN
RFY−KNN

T = 50

Horizon
B

ia
s2

0.
0

0.
2

0.
4

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
0

0.
2

0.
4

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
10

0.
20

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
2

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

Figure 5.8: NAR DGP. MSE decomposition of rectify forecasts (RFY-KNN). The results for recursive
(REC) and direct (DIR) forecasts with the LIN, MLP and KNN models are also included.

T = 50

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

REC−LIN
DIR−LIN
REC−MLP
DIR−MLP
REC−BST2
DIR−BST2
RFY−BST2

T = 50

Horizon

B
ia

s2

0.
0

0.
4

0.
8

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
00

0.
15

0.
30

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

M
S

E

0
1

2
3

4
5

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
04

0.
08

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0.
15

0.
30

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0.
15

0.
30

2 4 6 8 10

Figure 5.9: NAR DGP. MSE decomposition of boost forecasts (RFY-BST2). The results for recursive
(REC) and direct (DIR) forecasts with the LIN, MLP and BST2 models are also included.

95

Machine learning strategies for multi-step-ahead
time series forecasting

5.3.5 Averaging strategies

The RFY strategies are closely related to the strategies that compute a simple average of the recursive
and direct forecasts, which we will call the AVG strategies. The main difference between the RFY
and the AVG strategies is that the RFY strategies build the forecasts iteratively by adding direct
nonlinear rectification terms to the recursive base forecasts, while the AVG strategies compute
recursive and direct forecasts independently and then average them to obtain the final forecasts, as
can be seen in expression (5.2.3).

In this section, we will compare RFY-KNN and RFY-BST2 with the following AVG strategies:
(i) average of REC-LIN and DIR-KNN, denoted as AVG-LIN-KNN, (ii) average of REC-LIN and
DIR-BST2, denoted as AVG-LIN-BST2, (iii) average of REC-KNN and DIR-KNN, denoted as AVG-
KNN-KNN and (iv) average of REC-BST2 and DIR-BST2, denoted as AVG-BST2-BST2.

As explained in Section 4.2.1, the variance component of both the AVG and the RFY strategies can
be further decomposed into subcomponents as in expression (4.2.5), to understand the different
sources of variance. In fact, the forecasts g of both the AVG and the RFY strategies can be written
as a sum of two parts g1 and g2. For the AVG strategies, g1 and g2 represent the recursive and direct
forecasts respectively divided by two. For the RFY strategies, g1 represents the REC-LIN forecasts
and g2 represents the rectification term. So, the total variance Vh of the forecasts g at horizon h can
be decomposed into the variances V1;h and V2;h of each part g1 and g2 plus the covariance COVh of
the two parts.

This additional decomposition will be given in the form of stacked area plots with the following
information. The total variance is given by the (hatched) yellow area under the red line and the
total bias is given by the area in cyan between the black line and the red line. The variance of the
recursive forecasts is given in grey and the variance of the direct forecasts or the rectification terms
is given in orange. Finally, the covariance component is given in white if it is positive, otherwise, it
is given by the area above the red line (not taking into account the blue area).

The results for the AR DGP are given in Figures 5.10 and 5.11.

Let us first compare the RFY-strategies with REC-LIN. Recall that the RFY strategies adjust the
forecasts from REC-LIN by using direct nonlinear rectification models. Because, the LIN model is
well-specified for the AR DGP, the residuals from the REC-LIN forecasts will only contain noise.
In consequence, the rectifications models of the RFY strategies will contribute to the increase of
the forecast variance as can be seen in the third column of Figure 5.10.

For both RFY-KNN and RFY-BST2, the variance of the rectification models can be seen in Figure
5.11 where the increase in variance compared to REC-LIN is particularly noticeable at long horizons,
but is smaller with RFY-BST2. In addition, for the RFY strategies, the covariance is close to zero
since the base model and the rectification models are estimating different quantities. This also
justifies the assumptions we made about the variability terms for expressions (5.3.1) and (5.3.2).
Finally, the difference in bias between REC-LIN and the RFY strategies increases with the time
series length T as can be seen in the second column of Figure 5.10.

Let us now compare RFY-KNN and RFY-BST2 with AVG-LIN-KNN and AVG-LIN-BST2. In the last
column of Figure 5.10, we see that the RFY strategies have higher errors than the AVG strategies,
especially for long horizons. However, the relative difference between the RFY strategies and the
AVG strategies decreases with an increasing time series length. In addition, for T = 400, we observe
larger errors for AVG-LIN-KNN compared to RFY-KNN at short horizons.

The smaller errors of the AVG-LIN strategies can be explained by the fact that the DGP is linear,
and as a result REC-LIN has both a smaller bias and variance component. Averaging REC-LIN

96

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

REC−LIN
AVG−LIN−KNN
AVG−LIN−BST2
AVG−KNN−KNN
AVG−BST2−BST2
RFY−KNN
RFY−BST2

T = 50

Horizon
B

ia
s2

0.
0

0.
5

1.
0

1.
5

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
0

0.
2

0.
4

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

Figure 5.10: AR DGP. MSE decomposition of recursive linear forecasts (REC-LIN), rectify forecasts
(RFY-KNN), boost forecasts (RFY-BST2), and averaging (AVG) forecasts with LIN, MLP,
KNN and BST2 models.

with nonlinear direct forecasts will increase the errors for long time series but for short time series,
the AVG-LIN strategies will still benefit from the smaller errors of REC-LIN.

The variance decomposition of the AVG-LIN strategies is given in Figure 5.11 where we can see
that the variances of g1 and g2 are much smaller than those of the RFY strategies. This can be
explained by the fact that the averaging operator is dividing each part by two, and as a result, the
variance of each part is divided by four.

In contrast to the RFY strategies, we can see that the two parts g1 and g2 of the AVG-LIN strategies
have a positive covariance. This can be explained by the fact that the two parts are estimating the
same quantity, while for the RFY strategies, g2 is estimating the residuals from g1; and therefore
they are complementary. In terms of the bias component, we can see in the second column of
Figure 5.10 that the AVG-LIN strategies have a higher bias than the RFY strategies, particularly for
T = 50 and T = 100.

Finally, let us compare the RFY strategies with AVG-KNN-KNN and AVG-BST2-BST2, that is
strategies that compute an average of nonlinear recursive and direct forecasts. The results in the
last column of Figure 5.10 suggest that these strategies do not improve the performance compared
to the RFY strategies. In the second and third column, we can see that they have both a high
bias and high variance compared to the RFY strategies. We can also see that the AVG-BST2-BST2
strategy has smaller errors than AVG-KNN-KNN for T = 100 and T = 400. One explanation is that
the averaging procedure cannot reduce the high bias of REC-KNN and REC-BST2 (see Figures 5.4
and 5.5).

The results for the STAR DGP are given in Figures 5.12 and 5.13.

97

Machine learning strategies for multi-step-ahead
time series forecasting

2 4 6 8

0.
0

1.
0

2.
0

T = 50 − REC−LIN

Horizon

E
rr

or

2 4 6 8

0.
0

1.
0

2.
0

T = 50 − AVG−LIN−KNN

Horizon

E
rr

or
2 4 6 8

0.
0

1.
0

2.
0

T = 50 − RFY−KNN

Horizon

E
rr

or

2 4 6 8

0.
0

1.
0

2.
0

T = 50 − AVG−LIN−BST2

Horizon

E
rr

or

2 4 6 8

0.
0

1.
0

2.
0

T = 50 − RFY−BST2

Horizon

E
rr

or

2 4 6 8

0.
0

0.
4

0.
8

1.
2

T = 100 − REC−LIN

Horizon

E
rr

or

2 4 6 8

0.
0

0.
4

0.
8

1.
2

T = 100 − AVG−LIN−KNN

Horizon

E
rr

or

2 4 6 8

0.
0

0.
4

0.
8

1.
2

T = 100 − RFY−KNN

Horizon

E
rr

or
2 4 6 8

0.
0

0.
4

0.
8

1.
2

T = 100 − AVG−LIN−BST2

Horizon

E
rr

or

2 4 6 8

0.
0

0.
4

0.
8

1.
2

T = 100 − RFY−BST2

Horizon

E
rr

or

2 4 6 8

0.
0

0.
2

0.
4

T = 400 − REC−LIN

Horizon

E
rr

or

2 4 6 8

0.
0

0.
2

0.
4

T = 400 − AVG−LIN−KNN

Horizon

E
rr

or

2 4 6 8

0.
0

0.
2

0.
4

T = 400 − RFY−KNN

Horizon

E
rr

or

2 4 6 8
0.

0
0.

2
0.

4

T = 400 − AVG−LIN−BST2

Horizon

E
rr

or
2 4 6 8

0.
0

0.
2

0.
4

T = 400 − RFY−BST2

Horizon

E
rr

or

Figure 5.11: AR DGP. The MSE of REC-LIN, AVG-LIN-KNN, RFY-KNN, AVG-LIN-BST2 and RFY-
BST2 is decomposed into noise (in grey), bias (in cyan) and variance (in yellow) components.
The stacked area plots show the relative contribution of each component to the total MSE
over the forecast horizon.

In Section 4.4.4, we have seen that, even if the DGP is nonlinear, REC-LIN has smaller errors than
the strategies that involve nonlinear forecasts at long horizons due to a significantly lower variance
(see Figure 4.11). In the third column of Figure 5.12, we can see that the AVG-LIN strategies also
benefit from a significantly lower variance since the final forecasts are partly composed of REC-LIN
forecasts.

In Section 4.4.4, we have also seen that REC-LIN is biased when the DGP is nonlinear. In Figure
5.12, we can see that the AVG-LIN strategies have also a higher bias compared to other strategies
but a smaller bias than REC-LIN since they are partly composed of direct nonlinear forecasts.

Compared to the RFY strategies, the AVG-LIN strategies have a lower variance for all time series
lengths. In Figure 5.13, we can see that the higher variance of the RFY strategies comes from the
higher variance of the rectification models at long horizons. However, the AVG-LIN strategies
have a higher bias than the RFY strategies for short horizons and a comparable bias component for
longer horizons. In addition, the relative difference in the bias component between these strategies
increases with the time series length T , especially with RFY-BST2.

If we compare AVG-KNN-KNN and AVG-BST2-BST2 with the corresponding RFY strategies, we
can see in the last column of Figure 5.12 that AVG-KNN-KNN and AVG-BST2-BST2 suffer from
higher errors compared to the RFY strategies for the first few horizons and for T = 50 and T = 100,
due to both a higher bias and a higher variance. For longer horizons, the RFY strategies have higher
errors when T = 50 and comparable performance when T = 100. In the third column, we can see
for T = 400 that both AVG-KNN-KNN and AVG-BST2-BST2 have an increasing variance with the
horizon. This can be explained by the fact that they are composed of nonlinear recursive forecasts.

98

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0.
00

0.
04

2 4 6 8 12

REC−LIN
AVG−LIN−KNN
AVG−LIN−BST2
AVG−KNN−KNN
AVG−BST2−BST2
RFY−KNN
RFY−BST2

T = 50

Horizon
B

ia
s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
0

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
3

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
0

2 4 6 8 12

Figure 5.12: STAR DGP. MSE decomposition of recursive linear forecasts (REC-LIN), rectify forecasts
(RFY-KNN), boost forecasts (RFY-BST2), and averaging (AVG) forecasts with LIN, MLP,
KNN and BST2 models.

2 6 10 140.
00

0
0.

01
5

0.
03

0T = 50 − REC−LIN

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
5

0.
03

0T = 50 − AVG−LIN−KNN

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
5

0.
03

0T = 50 − RFY−KNN

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
5

0.
03

0T = 50 − AVG−LIN−BST2

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
5

0.
03

0T = 50 − RFY−BST2

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
0

T = 100 − REC−LIN

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
0

T = 100 − AVG−LIN−KNN

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
0

T = 100 − RFY−KNN

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
0

T = 100 − AVG−LIN−BST2

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
0

T = 100 − RFY−BST2

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
0

T = 400 − REC−LIN

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
0

T = 400 − AVG−LIN−KNN

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
0

T = 400 − RFY−KNN

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
0

T = 400 − AVG−LIN−BST2

Horizon

E
rr

or

2 6 10 140.
00

0
0.

01
0

T = 400 − RFY−BST2

Horizon

E
rr

or

Figure 5.13: STAR DGP. The MSE of REC-LIN, AVG-LIN-KNN, RFY-KNN, AVG-LIN-BST2 and
RFY-BST2 is decomposed into noise (in grey), bias (in cyan) and variance (in yellow)
components. The stacked area plots show the relative contribution of each component to the
total MSE over the forecast horizon.

99

Machine learning strategies for multi-step-ahead
time series forecasting

5.3.6 Summary

• Scenario A: Linear model and linear DGP. If the base model is well-specified, the direct
rectification terms of the rectify and boost strategies will not bring any benefit to the recursive
base forecasts since the residuals will only contain noise. In that case, having small or no
rectification terms is better in order not to increase the variance too much. In particular,
with no rectification terms, the rectify and boost forecasts become equivalent to the recursive
linear forecasts that has better properties in that setting.

If the base model is misspecified, for example due to omitted variables, the rectification
terms will remove or reduce the bias of the recursive base forecasts provided that the omitted
variables are included into the inputs of the rectification models.

Overall, because the DGP is linear, nonlinear rectification terms are likely to increase the
variance of both rectify and boost forecasts compared to recursive and direct linear forecasts,
especially with short time series. The boost strategy can be a better alternative since it limits
the complexity of the rectification models by only allowing bivariate interactions between
the lagged variables and by benefiting from the reduced variance of the weak learners.

• Scenario B: Linear model and nonlinear DGP. In contrast to the recursive and direct linear
forecasts, the rectify and boost forecasts will generate unbiased forecasts provided that the
rectification models are flexible enough to estimate the nonlinear function. However, even if
the DGP is nonlinear, the recursive and direct linear forecasts can benefit from a significantly
lower variance especially with short time series at long horizons.

The performance of the rectify and boost forecasts compared to recursive and direct linear
forecasts will also depend on the level of nonlinearity. For a weakly nonlinear DGP, recursive
and direct linear forecasts can already provide good approximations and will have a low bias
component, especially for short time series. The rectify and boost forecasts will reduce this
bias and will have smaller errors provided that the rectification terms do not increase too
much the variance.

For a strongly nonlinear DGP, the bias of the recursive and direct linear forecasts is expected
to be high, especially for long time series. The rectify and boost forecasts will have a lower
bias since they include nonlinear rectification terms. However, because of the limitations to
bivariate interactions, the boost strategy can have a higher error than the rectify strategy, for
example if the nonlinear function contain higher-order interactions.

• Scenario C: Nonlinear model and linear DGP.

If the nonlinear models of the recursive and direct strategies all switch to linear models,
this scenario becomes equivalent scenario A. Otherwise, because the DGP is linear, the
rectification terms of the rectify and boost strategies will not bring any benefit to the recursive
base forecasts. In contrast, having additional rectification terms will only contribute to
increase the errors, especially the variance with short time series.

However, even if the rectify and boost strategies includes additional rectification terms, the
forecast errors are expected to be smaller than the forecast errors of the recursive nonlinear
forecasts, that suffer from the amplification of errors with the horizon. Compared to direct
nonlinear forecasts, the rectify and the boost strategies can benefit from the lower variance of
the recursive base forecasts provided that the rectification terms do not increase the variance
too much. This is more likely to happen with the boost strategy due to the reduced variance
of the rectification models.

• Scenario D: Nonlinear model and nonlinear DGP.

100

Machine learning strategies for multi-step-ahead
time series forecasting

Because the rectify and boost strategies generate recursive linear forecasts, they do not suffer
from the amplification of errors with the horizon as with the recursive nonlinear forecasts.
Also, the rectification models of the rectify and boost strategies allow to reduce the bias of
the recursive linear forecasts at each horizon.

Compared to direct nonlinear forecasts, the rectify and boost strategies model part of the
function using the linear base model rather than directly estimate it. One advantage of this
process is that simpler nonlinear direct rectification models can be used which can in turn
decrease the total variance.

• Comparison with averaging strategies

For both linear and nonlinear DGP, and for long time series, the rectify and boost strategies
have comparable performance to the averaging strategies that are composed of recursive
linear forecasts and direct nonlinear forecasts, but have higher errors for short time series. In
particular, the rectification models of the rectify and boost strategies contribute significantly
to the increase in variance at long horizons.

The averaging strategies that are composed of recursive and direct nonlinear forecasts have
higher errors than the averaging strategies which includes recursive linear forecasts. Com-
pared to the rectify and boost strategies, they have higher errors when the DGP is linear and
comparable performance when the DGP is nonlinear.

101

Machine learning strategies for multi-step-ahead
time series forecasting

5.4 Real-data experiments

To shed some light on the performance of the different strategies with real-world time series, we
carry out some experiments with the time series from the M3 and NN5 competitions. Details about
the data and the methodology are given in Appendix A.

The tables that follow present the SMAPE and MASE forecast accuracy measures (see Section 2.3.6)
for different strategies over the forecast horizon. In addition, the tables show average forecast error
measures over the horizons 1 to h in the columns labelled ’Average 1 − h’. The average ranking
for each strategy over all horizons is also given in the last column, labelled ’Avg. rank’. For each
accuracy measure, the strategies are ranked according to the ’Avg. rank’, i.e. the last column of
each table. To compare the different strategies, we will consider the average rank, the forecast
errors at each horizon as well as the average errors over the horizons 1 to h. The presentation of
the results is inspired by the work of Athanasopoulos and Hyndman (2011) where the authors
compared the performance of various methods for forecasting tourism data.

We first compare the results of the RFY strategies with the REC and DIR strategies for different
learning algorithms.

The results for the M3 competition are presented in Table 5.1. Since we can draw the same
conclusions from both the SMAPE and MASE accuracy measures, we will only consider the SMAPE
measure to compare the strategies. The results can be summarized as follows:

• For all models, the REC strategies have comparable performance to the DIR strategies for
short horizons (i.e. h = 1,2,3), but have smaller errors for longer horizons (i.e. h = 6,12,18).
One reason is that the DIR strategies have a decrease of h − 1 samples at horizon h which
can be important in this case since the M3 time series are relatively short (T ≤ 126) and the
horizon (H = 18) is large compared to the time series length.

• REC-LIN and REC-MLP have a comparable performance. This suggests that the MLP model
has often selected a structure close to the LIN model. We observe the same behavior when
comparing DIR-LIN with DIR-MLP.

• RFY-BST2 improves the performance of REC-LIN, while RFY-KNN decreases it. We can ex-
plain the reduced performance of RFY-KNN compared to REC-LIN by the possible overfitting
of the direct KNN rectification models with the short M3 time series. The better performance
of RFY-BST2 can be explained by the reduced variance of the boosting components. In
particular, we can see that RFY-BST2 has comparable performance to REC-LIN for short
horizons (i.e. h = 1,2,3) but smaller errors for long horizons (i.e. h = 12,18). This suggest that
RFY-BST2 has applied few boosting iterations at short horizons compared to longer horizons.

• For both KNN and BST2 models, the RFY strategies outperform their respective REC and
DIR strategies. In fact, we can see that RFY-KNN has smaller errors than both REC-KNN
and DIR-KNN consistently over the horizon. The same behavior is observed for RFY-BST2
compared to REC-BST2 and DIR-BST2. This confirms the advantage of the rectify and boost
strategies which model the residuals from the recursive linear forecasts using direct nonlinear
models. In particular, RFY-BST2 has considerably reduced the errors over REC-BST2 and
DIR-BST2 as already observed in Figure 5.5, which was mainly due to a large bias component.

The results for the NN5 competition are presented in Table 5.2 and can be summarized as follows:

• In contrast to the M3 competition, the DIR strategies outperform the REC strategies, with
DIR-BST2 ranking first. One explanation can be that the NN5 time series are longer (T = 735)

102

Machine learning strategies for multi-step-ahead
time series forecasting

Table 5.1: M3 competition. SMAPE and MASE forecast accuracy measures for rectify (RFY-KNN) and
boost forecasts (RFY-BST2) as well as recursive (REC) and direct (DIR) forecasts with LIN,
KNN, MLP and BST2 models.

Strategy Forecast horizon (h) Average Avg. rank
1 2 3 6 12 18 1-6 1-12 1-18

SMAPE
RFY-BST2 12.54 11.48 13.17 12.98 15.11 19.78 12.97 13.91 15.34 2.39
REC-LIN 12.52 11.37 13.18 13.02 15.38 20.12 12.90 13.93 15.41 3.17
REC-MLP 12.55 11.65 13.59 12.97 15.23 19.98 13.05 14.01 15.42 3.56
RFY-KNN 12.77 12.07 13.52 13.34 15.47 19.91 13.40 14.14 15.60 3.83
DIR-MLP 12.43 11.74 13.14 13.65 15.11 21.07 13.43 14.24 16.11 5.00
DIR-LIN 12.45 11.49 13.18 13.48 15.34 21.91 13.33 14.09 16.15 5.06
REC-KNN 13.10 12.20 13.54 14.05 15.94 20.07 13.82 14.66 16.05 6.36
DIR-KNN 13.10 12.21 13.65 14.26 16.58 20.72 13.83 14.86 16.42 7.25
NAIVE 15.49 14.45 15.86 14.68 15.99 20.86 15.69 16.16 17.37 8.56
REC-BST2 15.49 15.46 17.42 16.91 18.04 21.38 16.96 17.43 18.62 10.03
DIR-BST2 15.49 14.60 17.23 18.44 21.18 23.95 17.08 18.71 20.33 10.81

MASE
RFY-BST2 2.56 2.51 2.91 3.42 4.43 6.06 3.11 3.58 4.19 2.00
REC-MLP 2.56 2.53 3.09 3.44 4.36 6.01 3.13 3.60 4.20 2.50
REC-LIN 2.55 2.51 2.94 3.46 4.47 6.10 3.12 3.61 4.23 3.44
RFY-KNN 2.63 2.62 3.14 3.46 4.40 6.26 3.25 3.66 4.31 4.33
DIR-MLP 2.54 2.51 2.87 3.56 4.44 6.74 3.14 3.67 4.50 5.56
DIR-LIN 2.55 2.54 2.97 3.45 4.31 7.26 3.20 3.65 4.55 5.72
REC-KNN 2.77 2.68 3.27 3.67 4.70 6.20 3.36 3.83 4.42 6.36
DIR-KNN 2.77 2.60 3.21 3.76 5.00 6.61 3.38 3.89 4.57 7.53
NAIVE 3.26 3.08 3.65 3.82 4.54 6.56 3.75 4.12 4.70 7.94
REC-BST2 3.37 3.41 4.08 4.62 5.45 6.68 4.14 4.63 5.16 9.75
DIR-BST2 3.37 3.11 4.05 5.01 6.54 7.39 4.23 5.05 5.75 10.86

and less noisy, and the forecast horizon is longer (H = 56). In that case, the DIR strategy can
provide better forecasts than recursive forecasts since it does not suffer from the propagation
of errors with the horizon, and the loss of data points with the horizon is less important since
T is large relative to the horizon H .

• DIR-LIN and DIR-MLP have a comparable performance as in the M3 competition. However,
REC-LIN has much lower errors than REC-MLP, which suggest that the MLP model has often
selected structures that are quite different from the LIN model.

• When considering the averaged errors, RFY-KNN has larger errors than REC-LIN, while
RFY-BST2 has comparable performance to REC-LIN. Again, the reduced variance of the
boosting components can explain the better performance of RFY-BST2.

• The RFY strategies have higher errors than their respective DIR strategies. This suggests that
the recursive linear forecasts do not provide any benefit and fitting direct models is a better
alternative.

103

Machine learning strategies for multi-step-ahead
time series forecasting

Table 5.2: NN5 competition. SMAPE and MASE forecast accuracy measures for rectify forecasts (RFY-
KNN) and boost forecasts(RFY-BST2) as well as recursive (REC) and direct (DIR) forecasts
with LIN, KNN, MLP and BST2 models.

Strategy Forecast horizon (h) Average Avg. rank
1 2 3 7 14 21 56 1-7 1-14 1-21 1-28 1-35 1-42 1-49 1-56

SMAPE
DIR-BST2 14.34 11.81 11.89 18.18 18.30 40.02 16.52 15.99 17.19 19.99 19.70 21.91 22.41 22.00 21.31 2.38
DIR-LIN 14.05 12.63 12.67 18.78 17.87 40.67 17.21 16.50 17.65 20.43 20.08 22.22 22.68 22.25 21.59 3.86
DIR-MLP 14.86 13.36 12.43 18.72 18.46 40.76 17.27 16.96 17.96 20.76 20.37 22.43 22.86 22.41 21.73 4.64
DIR-KNN 14.66 12.12 11.64 17.78 18.38 41.48 17.27 16.28 17.47 20.35 20.06 22.25 22.75 22.34 21.69 4.72
REC-BST2 14.34 11.44 11.99 18.86 18.65 41.47 18.05 16.07 17.45 20.30 20.10 22.48 22.85 22.39 21.75 5.04
RFY-BST2 14.03 12.40 12.56 18.55 18.31 40.92 16.75 16.45 17.75 20.54 20.24 22.44 22.92 22.52 21.81 5.27
REC-LIN 14.05 12.60 12.44 18.45 17.92 41.18 17.70 16.53 17.81 20.53 20.28 22.49 23.07 22.71 22.10 6.23
REC-KNN 14.66 12.40 12.46 18.45 19.15 41.39 17.15 16.88 18.24 21.06 20.76 22.80 23.23 22.76 22.08 6.24
RFY-KNN 14.84 13.63 12.86 18.99 18.32 40.77 17.87 17.17 18.48 21.06 20.78 22.86 23.45 23.09 22.53 8.16
MEAN 16.69 14.22 13.64 18.59 17.83 41.54 18.03 18.06 18.91 21.42 21.09 23.24 23.80 23.40 22.77 9.02
REC-MLP 14.90 13.47 13.79 19.61 19.73 43.01 18.84 17.69 19.03 21.85 21.68 23.96 24.39 23.95 23.29 10.43

MASE
DIR-BST2 0.28 0.28 0.38 0.43 0.42 0.79 0.40 0.48 0.52 0.59 0.57 0.61 0.64 0.62 0.61 2.60
DIR-LIN 0.27 0.30 0.40 0.44 0.41 0.81 0.42 0.49 0.53 0.60 0.58 0.62 0.64 0.63 0.61 3.79
DIR-MLP 0.28 0.31 0.39 0.44 0.43 0.81 0.42 0.50 0.53 0.61 0.59 0.62 0.65 0.63 0.62 4.66
REC-BST2 0.28 0.27 0.38 0.45 0.44 0.83 0.44 0.48 0.52 0.60 0.58 0.62 0.64 0.63 0.61 4.78
DIR-KNN 0.28 0.29 0.37 0.42 0.43 0.83 0.42 0.49 0.53 0.60 0.58 0.62 0.65 0.63 0.62 4.83
RFY-BST2 0.27 0.29 0.39 0.43 0.43 0.82 0.41 0.49 0.53 0.61 0.59 0.62 0.65 0.64 0.62 5.62
REC-KNN 0.28 0.29 0.39 0.44 0.44 0.84 0.42 0.50 0.55 0.62 0.60 0.63 0.66 0.65 0.63 6.31
REC-LIN 0.27 0.30 0.39 0.43 0.42 0.82 0.43 0.49 0.54 0.61 0.59 0.62 0.66 0.65 0.63 6.50
RFY-KNN 0.29 0.31 0.41 0.44 0.43 0.81 0.43 0.51 0.56 0.62 0.60 0.64 0.67 0.66 0.65 8.39
REC-MLP 0.28 0.31 0.42 0.44 0.45 0.85 0.43 0.51 0.56 0.63 0.61 0.65 0.68 0.66 0.65 9.20
MEAN 0.33 0.34 0.44 0.43 0.41 0.82 0.44 0.54 0.57 0.64 0.62 0.65 0.68 0.67 0.65 9.32

We now compare the results of the RFY strategies with the AVG strategies. The main motivation
for this comparison is to show the difference between averaging recursive and direct forecasts, and
adjusting recursive linear forecasts with direct nonlinear models.

The results for the M3 competition are given in Table 5.3 and can be summarized as follows:

• When considering the averaged errors, RFY-BST2 has a comparable performance to AVG-
LIN-MLP, AVG-LIN-KNN and AVG-MLP-MLP. This is also confirmed by the MASE accuracy
measure.

• AVG-LIN-KNN has smaller errors than RFY-KNN. In other words, averaging recursive linear
forecasts with direct KNN forecasts is better than adjusting recursive linear forecasts with
direct KNN models. In contrast, RFY-BST2 outperforms AVG-LIN-BST2 which averages the
best forecasts (REC-LIN) with the worst forecasts (REC-BST2) as can be seen in Table 5.1.

• The poor performance of AVG-KNN-KNN and AVG-BST2-BST2 can be explained by the fact
that they both average recursive and direct forecasts that have high errors.

The results for the NN5 competition are given in Table 5.4 and can be summarized as follows:

• RFY-BST2 has larger errors than both AVG-BST2-BST2 and AVG-LIN-BST2, which benefit
from the superior performance of DIR-BST2, as can be seen in Table 5.2. The larger error of

104

Machine learning strategies for multi-step-ahead
time series forecasting

Table 5.3: M3 competition. SMAPE and MASE forecast accuracy measures for rectify forecasts (RFY-
KNN) and boost forecast (RFY-BST2) as well as averaging forecasts (AVG) with LIN, KNN,
MLP and BST2 models.

Strategy Forecast horizon (h) Average Avg. rank
1 2 3 6 12 18 1-6 1-12 1-18

SMAPE
AVG-LIN-MLP 12.41 11.42 12.97 13.02 14.80 20.04 12.95 13.73 15.26 2.61
AVG-LIN-KNN 12.69 11.43 12.97 13.07 15.38 19.37 12.94 13.89 15.25 2.67
AVG-MLP-MLP 12.40 11.55 13.27 12.89 14.72 19.97 13.01 13.79 15.30 2.89
RFY-BST2 12.54 11.48 13.17 12.98 15.11 19.78 12.97 13.91 15.34 3.00
RFY-KNN 12.77 12.07 13.52 13.34 15.47 19.91 13.40 14.14 15.60 4.67
AVG-KNN-KNN 13.10 11.84 13.22 13.54 15.70 19.56 13.45 14.35 15.73 5.28
AVG-LIN-BST2 13.01 11.88 14.22 14.35 16.52 20.36 13.97 15.01 16.37 6.89
AVG-BST2-BST2 15.49 14.86 16.85 17.26 19.04 22.32 16.73 17.67 18.95 8.00

MASE
RFY-BST2 2.56 2.51 2.91 3.42 4.43 6.06 3.11 3.58 4.19 2.28
AVG-MLP-MLP 2.54 2.49 2.92 3.43 4.23 6.13 3.09 3.53 4.21 2.56
AVG-LIN-MLP 2.54 2.48 2.84 3.44 4.29 6.18 3.09 3.53 4.22 3.06
AVG-LIN-KNN 2.60 2.47 2.99 3.46 4.56 6.06 3.15 3.62 4.23 3.22
RFY-KNN 2.63 2.62 3.14 3.46 4.40 6.26 3.25 3.66 4.31 4.72
AVG-KNN-KNN 2.77 2.57 3.14 3.57 4.68 6.15 3.28 3.75 4.35 5.39
AVG-LIN-BST2 2.71 2.52 3.27 3.86 5.06 6.32 3.38 3.96 4.56 6.78
AVG-BST2-BST2 3.37 3.23 4.02 4.67 5.81 6.89 4.12 4.72 5.30 8.00

Table 5.4: NN5 competition. SMAPE and MASE forecast accuracy measures for rectify forecasts (RFY-
KNN) and boost forecasts (RFY-BST2) as well as averaging forecasts (AVG) with LIN, KNN,
MLP and BST2 models.

Strategy Forecast horizon (h) Average Avg. rank
1 2 3 7 14 21 56 1-7 1-14 1-21 1-28 1-35 1-42 1-49 1-56

SMAPE
AVG-BST2-BST2 14.34 11.60 11.89 18.38 18.09 40.76 16.71 15.99 17.18 19.99 19.69 21.95 22.34 21.86 21.15 2.07
AVG-LIN-BST2 14.08 12.10 11.89 18.19 18.05 40.60 16.98 16.07 17.34 20.12 19.86 22.09 22.63 22.25 21.58 3.12
AVG-KNN-KNN 14.66 12.09 11.92 17.80 18.60 41.25 16.86 16.46 17.73 20.60 20.28 22.38 22.84 22.38 21.70 3.86
AVG-LIN-MLP 14.41 12.84 12.22 18.43 17.99 40.91 17.34 16.63 17.76 20.49 20.18 22.32 22.84 22.43 21.78 4.38
AVG-LIN-KNN 13.94 11.98 11.84 17.87 18.06 41.34 17.44 16.18 17.48 20.33 20.07 22.29 22.84 22.45 21.82 4.82
RFY-BST2 14.03 12.40 12.56 18.55 18.31 40.92 16.75 16.45 17.75 20.54 20.24 22.44 22.92 22.52 21.81 4.84
AVG-MLP-MLP 14.85 13.25 12.64 18.59 18.54 41.63 17.58 17.08 18.20 20.98 20.69 22.79 23.22 22.77 22.07 5.89
RFY-KNN 14.84 13.63 12.86 18.99 18.32 40.77 17.87 17.17 18.48 21.06 20.78 22.86 23.45 23.09 22.53 7.02

MASE
AVG-BST2-BST2 0.28 0.28 0.38 0.43 0.42 0.81 0.40 0.48 0.51 0.59 0.57 0.61 0.63 0.62 0.60 2.12
AVG-LIN-BST2 0.27 0.29 0.38 0.43 0.42 0.80 0.41 0.48 0.52 0.60 0.58 0.61 0.64 0.63 0.62 3.27
AVG-KNN-KNN 0.28 0.28 0.37 0.42 0.43 0.83 0.41 0.49 0.53 0.61 0.59 0.62 0.65 0.64 0.62 3.77
AVG-LIN-MLP 0.28 0.30 0.39 0.43 0.42 0.81 0.42 0.50 0.53 0.61 0.58 0.62 0.65 0.64 0.62 4.39
AVG-LIN-KNN 0.27 0.28 0.37 0.42 0.42 0.82 0.42 0.49 0.53 0.60 0.58 0.62 0.65 0.64 0.62 4.80
RFY-BST2 0.27 0.29 0.39 0.43 0.43 0.82 0.41 0.49 0.53 0.61 0.59 0.62 0.65 0.64 0.62 5.11
AVG-MLP-MLP 0.28 0.30 0.40 0.43 0.43 0.83 0.42 0.50 0.54 0.62 0.60 0.63 0.66 0.64 0.63 5.54
RFY-KNN 0.29 0.31 0.41 0.44 0.43 0.81 0.43 0.51 0.56 0.62 0.60 0.64 0.67 0.66 0.65 7.00

105

Machine learning strategies for multi-step-ahead
time series forecasting

both RFY-BST2 and AVG-LIN-BST2 seems to stem from REC-LIN which increases the errors,
especially for long horizons.

• As with RFY-BST2, RFY-KNN has larger errors than both AVG-KNN-KNN and AVG-LIN-
KNN that benefit from the superior performance of DIR-KNN. Again, RFY-BST2 outperforms
RFY-KNN due to the reduced variance of the boosting components.

• AVG-LIN-MLP has lower errors than AVG-MLP-MLP which is penalized by the large errors
of REC-MLP, as can be seen in Table 5.2

All in all, we obtain different results for the M3 and the NN5 competitions. In fact, with the M3
competition, the recursive strategy outperforms the direct strategy for all learning algorithms,
and vice versa for the NN5 competition. In particular, recursive linear forecasts provide good
forecasts with the M3 competition but are outperformed by other learning algorithms for the NN5
competition. Consequently, the rectify and boost strategies have also provided good forecasts for
the M3 competition but poorer forecasts for the NN5 competition. In fact, the main assumption of
the multi-stage strategies is that recursive linear forecasts will provide a good first approximation
that only needs few adjustments. This assumption seems to be met with the M3 competition
but not with the NN5 competition where direct nonlinear models provide better forecasts. One
explanation can be that the M3 time series are short (T ≤ 126) and very noisy while the NN5 time
series are longer (T = 735) and less noisy. Also, the forecast horizon (H = 18 for M3 and H = 56 for
NN5) can play an important role in the performance of the direct strategy which suffer from a loss
of h− 1 points at horizon h. Another observation is that the boost strategy always provides better
forecasts than the rectify strategy with the KNN model, which can be explained by the reduced
variance of the boosting components.

Finally, for the M3 competition, we have seen that the boost strategy has similar performance
than the best of the averaging strategies that involves recursive linear forecasts. For the NN5
competition, the boost strategy is penalized by the fact that recursive linear forecasts provide poor
forecasts, but does not increase the errors too much compared to the rectify strategy with the KNN
model.

5.5 Concluding remarks

A number of studies have focused on comparing recursive and direct forecasts, and have investi-
gated under which conditions one strategy is better than the other. The accuracy of recursive and
direct forecasts depends on many interacting factors, and choosing between these two strategies is
a challenging task in real-world applications since it involves finding the best trade-off between
bias and estimation variance of the forecasts over the horizon.

Hybrid forecasting strategies have been proposed but they received little attention notably due to
the additional complexity or the limited increase in performance compared to recursive and direct
forecasts.

Rather than treating the recursive and direct strategies as competitors, we proposed a new strategy,
called rectify, that seek to combine the best properties of both strategies. The main idea is to produce
recursive forecasts from a linear autoregressive model, and then adjust these forecasts using direct
nonlinear models in which the linear forecast errors are modelled, thus allowing nonlinearity
and interactions between lagged variables at each forecast horizon. In our implementation, we
considered the nearest neighbors model to estimate the rectification models.

Because recursive linear forecasts often need few adjustments at each horizon with real-world time
series, we considered a second strategy, called the boost strategy, that estimates the rectification

106

Machine learning strategies for multi-step-ahead
time series forecasting

models using gradient boosting algorithms that involve the so-called weak learners. As a result,
the boost strategy allows to reduce the overfitting phenomenon with weakly nonlinear time series,
but also provides a procedure for applying boosting algorithms to multi-step forecasting problems.

We have compared the rectify and boost strategies with (i) the recursive strategy, (ii) the direct
strategy and (iii) averaging strategies that compute an average of recursive and direct forecasts. We
considered both a bias and variance study as well as real-world experiments.

Overall, we found that the boost strategy outperforms the rectify strategy, notably due to resistance
to overfitting of the gradient boosting algorithms that involve weak learners as well as the limitation
to bivariate interactions. Because we found similar results when comparing the rectify and the
boost strategies with the recursive and direct strategies, we only summarize the results with the
boost strategy.

Compared to recursive and direct nonlinear forecasts, we found that the boost forecasts have
smaller errors for both linear and nonlinear DGP due to a lower variance, especially for short
horizons. In particular, for long time series, the boost forecasts have smaller errors than recursive
nonlinear forecasts that suffer from the accumulation of errors.

Compared to recursive and direct linear forecasts, the boost forecasts have lower errors at short
horizons when the DGP is nonlinear because of a lower bias component since they allow nonlinear
interactions between lagged variables. For longer horizons, linear forecasts have lower errors since
the variance component dominates the errors. When the DGP is linear, if the boost forecasts include
nonlinear rectification terms, they have larger errors than recursive and direct linear forecasts.

With the time series from the M3 and NN5 competitions, we obtained different results when
comparing the boost strategy with the recursive and direct strategies. With the M3 time series, the
boost strategy had better forecasts than both the recursive and direct strategies. With the NN5
time series, the direct strategy had better forecasts than both the boost and the recursive strategies.
The results suggest that the performance of the rectify and boost strategies is closely related to the
performance of the recursive base forecasts.

Compared to the averaging strategies composed of recursive and direct nonlinear forecasts, the
boost strategy has generally better forecasts, except with the NN5 time series where they benefit
from the smaller errors of the direct nonlinear forecasts. When the averaging strategies include
recursive linear forecasts, the rectify strategy has either comparable or poorer performance since
the averaging strategies benefit from a lower variance, especially for long horizons.

The rectify and boost forecasts are thus good alternatives to recursive and direct forecasts since
they avoid the problem of choosing between these two forecasts, and at the same time, often
provide comparable or better forecasts than the recursive and direct strategies with both linear and
nonlinear models. In particular, because the boost strategy involve weak learners, it can benefit
from the resistance to overfitting of the gradient boosting algorithms.

107

Chapter 6

Multi-horizon forecasting strategies

This chapter is partly based on the following publications

• S Ben Taieb, G Bontempi, A Atiya, et al. (2012). A review and comparison of strategies for
multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert
Systems with Applications 39(8), 7067–7083.

• G Bontempi and S Ben Taieb (January 2011). Conditionally dependent strategies for multiple-
step-ahead prediction in local learning. International Journal of Forecasting 27(3), 689–699.

• S Ben Taieb, A Sorjamaa, and G Bontempi (2010). Multiple-output modeling for multi-step-
ahead time series forecasting. Neurocomputing 73(10-12), 1950–1957.

6.1 Introduction

We can generate multi-step forecasts using a different model at each horizon h, where each model
is selected by minimizing h-step ahead forecast errors. Depending on whether the forecasts
are computed recursively or directly, the strategy is called RECMULTI or DIRECT, as given in
expressions (3.3.4) and (3.3.5), respectively.

For each model, we need to select a lag order as well as a set of parameters and hyperparameters
depending on the model form, as can be seen in Section 2.2. Having a different model for each
horizon allows a large flexibility since we can use a different lag order and a different model form
at each horizon. In addition, by minimizing h-step-ahead errors, criteria of model estimation are
matched with forecast accuracy, which is not the case for the recursive strategy that minimizes
one-step-ahead errors, as can be seen in expression (3.3.2).

However, because the model at horizon h is selected independently from the models for the other
horizons, consecutive forecasts can be based on potentially very different models, i.e. different
conditioning information and different model forms. This can lead to irregularities in the forecast
function. These irregularities are manifest as a contribution to the forecast variance. The problem
is exacerbated with short time series and when each of the models is allowed to have different lag
orders or to be nonlinear and nonparametrically estimated, as shown in Section 4.4.3. The goal of
this chapter is to investigate whether we can improve multi-step forecasts generated with machine
learning models that are independently selected at each horizon, by exploiting the information
contained in other horizons when learning each model.

To improve multi-step forecasts generated by different machine learning models, we propose to
change how each model is selected. More precisely, when selecting the model for horizon h, we also

108

Machine learning strategies for multi-step-ahead
time series forecasting

minimize its forecast errors for other horizons rather than only minimizing the errors at horizon
h. In particular, we propose to select the lag order and the hyperparameters of each model by
adding the forecast errors of the model for other horizons into the objective function for the current
horizon. We do not change the way the parameters are estimated and allow them to be selected
independently for each horizon. The main goal is to reduce the forecast variance of independently
selected models. Because the objective involves forecast errors from multiple horizons, we will call
these strategies multi-horizon to differentiate them from the single-horizon strategies that consider
each horizon in isolation.

Different multi-horizon strategies can be specified, with different formulation of the objective
function, and this, consequently, will reflect on the way the lag order and the hyperparameters are
optimized. We will first consider the multi-horizon strategies that include the forecast errors from
all horizons into the objective, which is equivalent to impose all the models to use the same lag
order and the same hyperparameters. This strategy is the opposite of the strategy that selects all
the models independently. We will also consider a less extreme strategy where we only include
local horizons into the objective. These different strategies together with their respective objective
function will be presented in the next section where we will consider both recursive and direct
forecasts.

All the proposed multi-horizon strategies will be evaluated and compared with the single-horizon
strategies in Section 6.4 where a bias and variance analysis will be applied as in Sections 4.4 and
5.3. In addition, we will also compare the different strategies in Section 6.5 using real-world time
series from the M3 and NN5 competitions as in Section 5.4. But before, in the next section, we
present some related work.

6.2 Related work

Exploiting the relatedness between a set of learning tasks to improve the performance of each task
has been studied in different fields.

In the statistics literature, several methods have been developed to deal with the problem of multi-
variate (also called multi-response) regression, where, instead of applying a univariate regression on
each response independently, a regression is applied on all the responses at the same time. The
methods include “curds and whey”(Breiman and Friedman, 1997), two-block partial least squares
(PLS) (Wold, 1975; Wold, 2001), canonical correlation analysis (CCA) (Hardoon, Szedmak, and
Shawe-Taylor, 2004), multivariate reduced rank regression (Izenman, 1975) and adaptive ridge
regression (Brown and Zidek, 1980). Nonlinear versions of some of these methods have also been
proposed in the literature (Rosipal and Trejo, 2002; Fukumizu, Bach, and Gretton, 2007; Hardoon
and Shawe-Taylor, 2010).

In the machine learning literature, the problem of jointly learning multiple tasks is known as
multi-task learning (Caruana, 1997; Evgeniou and Pontil, 2004), and has been applied for a large
number of problems including classification (Xue et al., 2007), regression (Solnon, Arlot, and Bach,
2012), but also for more general dependency estimation problems (Weston et al., 2003). As in the
regression setting, the rationale behind this paradigm is that when there are relations between the
tasks, the learning performance can be improved by learning the different tasks simultaneously
instead of considering each task independently from the other tasks. The performance for the main
task can be improved since the learner can exploit the commonality among the tasks to build a
better model.

109

Machine learning strategies for multi-step-ahead
time series forecasting

The different methods that have been proposed are often either supervised dimensionality reduc-
tion methods (Wold, 2001; Hardoon, Szedmak, and Shawe-Taylor, 2004) or regularization-based
methods (Evgeniou and Pontil, 2004; Tresp and Kriegel, 2006).

Among the various machine learning models, neural networks can naturally deal with multi-task
learning problems by using multiple-output nodes (Ou and Murphey, 2007). For the other models,
considering multiple tasks is not straightforward, and a number of extensions have been proposed
for example for support vector machines (Vazquez and Walter, 2003), regression trees (De’Ath,
2002), gradient boosting (Lutz and Buhlmann, 2006) and nonparametric models (Matias, 2005).

In the forecasting literature, the problem of exploiting the relatedness between different forecasting
tasks to improve the final forecasts has received little attention.

Weiss (1991) considered the problem of estimating the parameters of a misspecified linear model
by minimizing the sum of the forecasts errors for several horizons. However, using Monte Carlo
simulations, the author did not find superior performance of the proposed estimator compared to
the simple OLS estimator.

Liu (1996) views the problem of multi-step forecasting from an autoregressive linear model as
a multivariate linear regression problem and develops a new lag order selection procedure. The
author shows that the proposed procedure performs more efficiently than the corresponding
univariate procedure.

More recently, Xia and Tong (2011) challenged the conventional fitting methods which assume that
the postulated model is the true model and where one-step-ahead errors are minimized to select
the parameters. The authors show that these methods fail to capture some of the most basic global
features of the data such as cycles, and develop a systematic approach that involves minimizing
multi-step recursive forecast errors. However, they focused on the problem of feature matching
and did not consider the impact on multi-step forecasting.

Some of the previously described methods have also been applied in the context of multi-step time
series forecasting. For example, Franses and Legerstee (2009) considered the PLS method for jointly
estimating direct linear models for multi-step forecasting. The authors compared the proposed
method with the recursive and direct strategies on the quarterly index of US industrial production,
for the period January 1945 to April 2000. They found mixed results with better forecasts for the
recursive and the PLS methods compared to the direct strategy.

Applying the multi-output methods in the context of multi-step forecasting of a univariate time
series is challenging notably due to the limited amount of data as well as the high level of noise
of the real-world time series. Also, it is often hard to see a significant improvement with the
multi-output methods on short time series.

In addition, compared to the general setting of a multi-output regression problem, the input and
output variables have a specific structure in the context of multi-step forecasting. In fact, because
of the temporal correlation in the time series, the different lagged variables will be autocorrelated
and the autocorrelation typically decrease with the distance between the variables. Also, at horizon
h, we lose h observations for the corresponding regression task, which can become important for
short time series and long horizons.

In contrast to the different methods presented in this section, the strategies we proposed do not
involve any dimensionality reduction problem. In fact, our approach consists in adding the forecast
errors of some other horizons into the objective function of the model at each horizon to select the
lag order and hyperparameters. This is in contrast to the traditional approach that considers each
horizon in isolation.

110

Machine learning strategies for multi-step-ahead
time series forecasting

A related approach has been considered in Kline (2004) and Jin and Sun (2008) with multi-output
neural networks where each output node corresponds to one forecast horizon. With this approach,
the lag order, the hyperparameters as well as the parameters are selected jointly. However, in
our approach, we allow the parameters to be independently selected for each horizon, and only
select the lag order and hyperparameters jointly for some horizons depending on the strategy. By
doing so, we allow a larger flexibility for the strategies and the selection procedure is not model
dependent, which makes it applicable to any model.

6.3 The multi-horizon strategies

In Chapter 3, we have presented two single-horizon strategies that select a different model for each
horizon, depending on how the forecasts are generated.

With recursive forecasts, we have presented the RECMULTI strategy that selects the lag order and
hyperparameters as follows

(ph, ψ̂h) = argmin
p,ψ

∑
(rt−h,yt)∈Dval,h

[yt −m(h)(rt−h;ψ, β̂h)]2. (6.3.1)

With direct forecasts, we have presented the DIRECT strategy which selects the lag order and
hyperparameters as follows

(ph, ψ̂h) = argmin
p,ψ

∑
(rt−h,yt)∈Dval,h

[yt −mh(rt−h;ψ, β̂h)]2. (6.3.2)

In other words, both strategies minimize h-step ahead errors to select the lag order ph and the
hyperparameters ψh for each horizon h. In particular, we can see in expressions (6.3.1) and (6.3.2)
that the single-horizon strategies select both the lag order and the hyperparameters of the models
independently for each horizon h. By doing so, these strategies disregard potential substantial
information contained in the other horizons when selecting the model for each horizon h.

In the following, we present multi-horizon strategies that take advantage of that information
when selecting the lag order and the hyperparameters by adding the forecast errors of the current
model for other horizons into the objective function for the current horizon. The parameters,
however, are still independently selected for each horizon. To allow an easier comparison with
single-horizon strategies, we will show how the lag order and the hyperparameters are selected by
each multi-horizon strategy for each horizon.

The simplest multi-horizon strategies adds the forecast errors from all horizons into the objective
function, and the same lag order and hyperparameters are used for all horizons.

With recursive forecasts, the parameters are selected by minimizing the sum of the h′-step ahead
recursive errors over all forecast horizons, i.e. from h′ = 1 to h′ =H , as follows:

(ph, ψ̂h) = argmin
p,ψ

H∑
h′=1

∑
(rt−h′ ,yt)∈Dval,h′

[
yt −m(h′)(rt−h′ ;ψ, β̂h′)

]2
. (6.3.3)

where h = 1, . . . ,H . Because the objective is the same for each horizon h, we have ph = p and ψ̂h = ψ̂
for all horizons h. However, the parameters are allowed to be selected independently, that is we
can have β̂h1

, β̂h2
for h1 , h2. We will denote this strategy by RECJOINT (RJT).

111

Machine learning strategies for multi-step-ahead
time series forecasting

To see the difference with RECMULTI, we can also write expression (6.3.3) as follows:

(ph, ψ̂h) = argmin
p,ψ

∑
(rt−h,yt)∈Dval,h

[yt −m(h)(rt−h;ψ, β̂h)]2

︸ ︷︷ ︸
Objective of RECMULTI

+
∑

h′∈{1,...,H}\{h}

∑
(rt−h′ ,yt)∈Dval,h′

[
yt −m(h′)(rt−h′ ;ψ, β̂h′)

]2
︸ ︷︷ ︸

Extra information

,

where the first part is the objective of RECMULTI, given in (6.3.1), and the second part contains
extra information from other horizons.

To see the difference with the recursive strategy, we can also write expression (6.3.3) as follows:

(ph, ψ̂h) = argmin
p,ψ

∑
(rt−h,yt)∈Dval

[yt −m(1)(rt−1;ψ, β̂1)]2

︸ ︷︷ ︸
Objective of REC

+
∑

h′∈{2,...,H}

∑
(rt−h′ ,yt)∈Dval,h′

[
yt −m(h′)(rt−h′ ;ψ, β̂h′)

]2
︸ ︷︷ ︸

Extra information

,

(6.3.4)
where the first part is the commonly used objective of the recursive strategy, given in expression
(3.3.2), and the second part contains extra information from other horizons. We can see that the lag
order and the hyperparameters are optimized taking into account their whole effect on all future
steps, rather than the myopic one-step-ahead view of the recursive strategy.

A variant of the expression (6.3.3) consists in minimizing M-step-ahead errors instead of H-step
ahead errors with M ,H , as follows:

(ph, ψ̂h) = argmin
p,ψ

M∑
h′=1

∑
(rt−h′ ,yt)∈Dval,h′

[
yt −m(h′)(rt−h′ ;ψ, β̂h′)

]2
. (6.3.5)

In other words, the selection of the lag order and the hyperparameters does not depend on the
forecast horizonH . This variant has been considered withM = 2 in Bontempi, Birattari, and Bersini
(1999) and more generally in Xia and Tong (2011). In particular, when M = 1 this strategy reduces
to the recursive strategy. We will denote this strategy RECJOINTM (RJTM)1.

Minimizing multi-step recursive errors with linear models is motivated by the fact that the loss
of forecasting performance when using an incorrect model with parameters tuned for multi-step
forecasts is expected to be smaller than parameters tuned for one-step-ahead forecasts. Tradi-
tionally, parameters have been selected by minimizing one-step-ahead errors given that it leads
to efficient parameter estimation if the model is well-specified. However, the Box dictum says
“Essentially, all models are wrong, but some are useful” which means that all the postulated models
are misspecified in practice. So, aiming at efficient estimation of the parameters by minimizing
one-step-ahead forecast errors will not necessary lead to better forecasts. Xia and Tong (2011) give
a small adjustment to the Box dictum that reflects this idea: “All models are wrong, but some are
useful if they are fitted properly”.

It is worth noting that minimizing multi-step-ahead errors with recursive forecasts is more chal-
lenging that minimizing one-step-ahead errors. In fact, the procedure for parameter estimation
must take into account the iterative nature of the recursive forecasts. For example, with the MLP
model, we need to consider recurrent neural networks with backpropagation through time (Werbos,
1990). In other words, it will depends on the considered model form.

To make it applicable for any model, we considered an alternative where we have replaced β̂h′ by β̂1
in the different objectives. In other words, we select the parameters by minimizing one-step-ahead

1Note that RECJOINT1 and REC are equivalent, as well as RECJOINTH and RECJOINT.

112

Machine learning strategies for multi-step-ahead
time series forecasting

errors but the lag order and the hyperparameters are selected by minimizing multi-step-ahead
errors. When the model is nonparametric (i.e. β = ∅) as with the KNN model, the problem
disappears since we don’t have any parameter to estimate.

As with recursive forecasts, we can also consider multi-horizon strategies with direct forecasts.
The simplest multi-horizon strategy minimizes the sum of the direct forecast errors over the entire
horizon as follows

(ph, ψ̂h) = argmin
p,ψ

H∑
h′=1

∑
(rt−h′ ,yt)∈Dval,h′

[
yt −mh′ (rt−h′ ;ψ, β̂h′)

]2
, (6.3.6)

where h = 1, . . . ,H . We will denote this strategy DIRJOINT (DJT).

To see the difference with the objective of DIRECT, we can also write expression (6.3.6) as follows

(ph, ψ̂h) = argmin
p,ψ

∑
(rt−h,yt)∈Dval,h

[yt −mh(rt−h;ψ, β̂h)]2

︸ ︷︷ ︸
Objective of DIRECT

+
∑

h′∈{1,...,H}\{h}

∑
(rt−h′ ,yt)∈Dval,h′

[
yt −mh′ (rt−h′ ;ψ, β̂h′)

]2
︸ ︷︷ ︸

Extra information

,

where the first part is the objective of DIRECT, given in (6.3.2), and the second part contains extra
information from the other horizons.

The main difference between expression (6.3.3) for RECJOINT and expression (6.3.6) for DIRJOINT
is the way the forecasts are generated. In the former, the forecasts are generated recursively while
in the latter, the forecasts are generated directly. Finally, although the same lag order and the same
set of hyperparameters are used for all horizons, the forecasts at each horizon can be different since
they are computed either with different parameters (in the parametric case) or different data (in
the nonparametric case).

Let us compare RECJOINT and DIRJOINT (the JOINT strategies) with RECMULTI and DIRECT
(the SINGLE strategies). By comparing expressions (6.3.3) and (6.3.6) with (6.3.1) and (6.3.2), we
can see that the total error is computed using more residuals in expressions (6.3.3) and (6.3.6).
In fact, with the SINGLE strategies the number of residuals at horizon h for a time series with T
observations is N = T − ph − h+ 1 where ph is the lag order for horizon h. For the JOINT strategies,
it is given by N =

∑H
h=1T − p − h+ 1 = H(T − p)− H(H−1)

2 where p is the lag order for all horizons.
For example, if T = 120, ph = p = 12 and H = 12, the SINGLE strategies will have N = (109 − h)
residuals at horizon h while the JOINT strategies will have N = 1230 residuals. It is worth noting
that although N = 1230 is much higher than N = (109 − h), the effective number of residuals is
much smaller since these residuals are serially correlated.

In addition, for the data points (rt , yt+h) where t > T − p+ h− 1, the corresponding output yt+h will
be missing for some of the horizons h = 1, . . . ,H . In consequence, for some data points, the sum
over all horizons (in (6.3.3) and (6.3.6)) cannot be computed and as a result, these data points
must be removed from the dataset. For time series with a large number of observations, the gain
from a larger number of residuals for the remaining points is expected to be more important than
the effect of removing some points. But, for short time series, reducing the dataset can have a
detrimental effect even if the remaining points have multiple residuals. Finally, summing over a
subset of the horizons is not appropriate since the total error is expected to be smaller than the
sum over all the horizons.

The aim of the JOINT strategies is to exploit the information contained in all horizons when
selecting the lag order and the hyperparameters of the model for horizon h. We have seen that
the number of residuals is largely increased compared to SINGLE strategies. However, because

113

Machine learning strategies for multi-step-ahead
time series forecasting

the forecast horizon H is arbitrarily set in real-world applications, the JOINT strategies can have
a problem with including residuals that are weakly correlated with the residuals at horizon h
into the objective of the model at horizon h. In fact, forecast errors at horizon h are typically
less correlated with the errors at horizon h′ when the distance between the horizon increases, i.e.
when the quantity |h− h′ | increases. Including “non-informative” horizons into the objective of the
model at horizon h can have a negative effect on the model selection procedure. In particular, since
multi-step forecast errors can have different scales with errors at longer horizons being generally
larger than errors at short horizons, some horizons can dominate others by implicitly having more
weight in the objective function. And if these horizons are beyond the predictability horizon, they
will have more weights while bringing no benefit to horizon h.

By comparing expressions (6.3.1) and (6.3.2) with (6.3.3) and (6.3.6), we can see that they are two
extremes where in the former case, we only include the horizon of interest into the objective while
in the later case, we include all the horizons.

We can define a more general strategy that associates to each horizon h a set Lh ⊂ {1, . . . ,H} that
contains all the horizons involved in the objective function of that horizon. The strategy is then
defined by the set L = {L1, . . . ,Lh} which contains the horizons included in the objective function for
all horizons h where h = 1, . . . ,H .

When the forecasts are generated recursively, the general strategy computes the lag order and the
hyperparameters as follows

(ph, ψ̂h) = argmin
p,ψ

∑
h′∈Lh

∑
(rt−h′ ,yt)∈Dval,h′

[
yt −m(h′)(rt−h′ ;ψ, β̂h′)

]2
, (6.3.7)

where Lh ⊂ {1, . . . ,H}.

If Lh = {h}, expression (6.3.7) becomes equivalent to expression (6.3.1), which corresponds to the
objective of RECMULTI. Similarly, if Lh = {1, . . . ,H}, then expression (6.3.7) becomes equivalent to
expression (6.3.3), which corresponds to the objective of RECJOINT. In addition, if Lh = {1}, this is
equivalent to the objective of the RECURSIVE strategy, given in (3.3.2).

With direct forecasts, the lag order and the hyperparameters are computed as follows

(ph, ψ̂h) = argmin
p,ψ

∑
h′∈Lh

∑
(rt−h′ ,yt)∈Dval,h′

[
yt −mh′ (rt−h′ ;ψ, β̂h′)

]2
. (6.3.8)

The objective of DIRECT given in (6.3.2) can be retrieved by using Lh = {h} in (6.3.8). Similarly, the
objective of DIRJOINT given in (6.3.6) is retrieved with Lh = {1, . . . ,H}.

There are a large number of possible sets L = {L1, . . . ,LH } each of which use a different formulation
of the objective function, and this, consequently, reflects on the way the lag orders and the
hyperparameters are optimized. Among these strategies, we have the SINGLE and the JOINT
strategies where Lh = {h} and Lh = {1, . . . ,H}, respectively.

Previously, we have seen that the selection of the lag order and the hyperparameters with the
JOINT strategies depends on the forecast errors for all the horizons while with the SINGLE
strategies this selection is made independently from other horizons. An alternative to these two
strategies consist in considering “local” information, that is horizons that are close to the horizon
of interest. Two horizons are considered close if |h− h′ | is small. In other words, we can define the
set Lh = {h− s1, . . . ,h, . . . ,h+ s2} where s1 and s2 are, respectively, the number of horizons before and
after the horizon h, that are considered. This strategy will be denoted RJTLs1s2 and DJTLs1s2 for
recursive and direct forecasts, respectively.

114

Machine learning strategies for multi-step-ahead
time series forecasting

Table 6.1: Summary of single-horizon and multi-horizon strategies.

Recursive strategies Direct strategies Lh Weights wh,h′
REC (3.3.2) - {1}

1{h′∈Lh}
|Lh|

RJTM (6.3.5) - {1, . . . ,M}
RTI (6.3.1) DIR (6.3.2) {h}
RJTs1s2 (6.3.7) DJTs1s2 (6.3.8) {h− s1, . . . ,h, . . . ,h+ s2}
RJT (6.3.3) DJT (6.3.6) {1, . . . ,H}

For the SINGLE strategies, we have s1 = 0 and s2 = 0 while for the JOINT strategies, we have
s1 = h− 1 and s2 =H − h. Intermediate values for s1 and s2 allow to have a better trade-off between
the SINGLE and the JOINT strategies. In particular, we will consider the configuration where s1 = 1
and s2 = 1, that is Lh = {h− 1,h,h+ 1}, which means we add the previous and the next horizons into
the objective function for horizon h. Of course, when the horizons are not defined (h < {1, . . . ,H})
such as in the borders, they are removed from the set Lh. This strategy is denoted RJTL11 and
DJTL11 with recursive and direct forecasts, respectively.

With the different strategies we have presented, the same weight is given to all forecast horizons
and the errors are limited to H-step ahead forecasts. It is possible to extend these strategies to
allow different weights for each horizon and to compute errors beyond the horizon H . In fact, we
can write the selection of the lag order and the hyperparameters for the model at horizon h as a
general optimization problem as follows

(ph, ψ̂h) = argmin
p,ψ

H ′∑
h′=1

∑
(rt−h′ ,yt)∈Dval,h′

wh,h′
[
yt − g(xt−h′ ;ψ, β̂h′)

]2
, (6.3.9)

where H ′ ∈N can take an arbitrarily value (different from H), wh,h′ is the weight given to horizon
h′ when selecting the lag order and hyperparameters for horizon h with wh,h′ ≥ 0 and

∑
h′ wh,h′ = 1,

g(rt−h;ψ, β̂h′) is the h-step ahead forecast which can be either generated recursively and written as
m(h)(rt−h;ψ, β̂h) or directly and written as mh(rt−h;ψ, β̂h), and h = 1 . . . ,H .

For all the strategies presented previously, the weights wh,h′ take binary value, that is an horizon
is either included or removed from the objective. Table 6.1 gives the value of the weights for all
horizons to represent the different strategies presented above. Of course, to represent the recursive
strategies, g(rt−h;ψ, β̂h′) is replaced by mh(rt−h;ψ and by β̂h) for direct strategies.

The general optimization problem in (6.3.9) includes many more strategies than the one we have
considered. In particular, we can define strategies that have weights wh,h′ , 0 for h′ > H , that is
strategies that look for information beyond the required forecast horizon H . Also, we can have
wh,h′ ∈ [0,1] instead of the binary case we considered where wh,h′ ∈ {0,1}. In this thesis, we will
limit our analysis to the strategies that have been presented above and leave for future work the
analysis of the general formulation given in (6.3.9).

6.3.1 Implementation

In expressions (6.3.7) and (6.3.8), we can see that the objective of all strategies involve computing
h-step ahead forecast errors for different lag order and hyperparameters.

In order to avoid computing those multiple times for each strategy, we propose to compute the
h-step ahead recursive or direct forecast errors for all lag orders, hyperparameters and forecast
horizons, and store the results in a large error matrix. Then, for a given forecasting strategy, we use

115

Machine learning strategies for multi-step-ahead
time series forecasting

the corresponding error matrix to select the lag order and hyperparameters for each horizon. By
doing so, we can significantly reduce the computational time.

Algorithm 4 gives the different steps to compute the multi-step forecast error matrix. The errors
are computed by holdout but the code can easily be extended to time series cross-validation. Also,
computing the complete error matrix E is not necessary for the recursive strategy since we only use
the information for h = 1. Algorithm 4 can be easily modified to limit the computations only for
specific horizons.

Algorithm 4 Multi-step forecast error matrix.

{y1, . . . , yT }: Time series with T observations.
H : Forecast horizon.
pmax: Maximum lag order.
m(·;ψ,β): Learning model with hyperparameters ψ and parameters β where ψ = [ψ1, . . . ,ψS]
and ψs ∈ Ψs(s = 1, . . . ,S).
E: Error matrix with dimensionality pmax × |Ψ1| × · · · × |ΨS | ×H .

1: for h← 1, . . . ,H do
2: The dataset for horizon h is D = {(xt−h, yt)} where xt−h = [yt−h, . . . , yt−h−pmax

]′.
3: Divide the dataset D into a training set Dtrain,h and a validation set Dvalid,h.
4: for p← 1, . . . ,pmax do
5: for ψ1 ∈ Ψ1 do

...
6: for ψS ∈ ΨS do
7: Using p lagged variables and the hyperparameters ψ = [ψ1, . . . ,ψS], estimate the parameters

β of the model m using the training set Dtrain,h.

8: Compute the h-step ahead forecasts g(xt−h;ψ, β̂;h) for all the validation points xt−h in
Dvalid,h.

9: Compute the average validation errors and store it into the error matrix:
E[p,ψ1, . . . ,ψS ,h]← 1

|Dvalid,h|
∑

(xt−h,yt)∈Dvalid,h
[yt − g(xt−h;ψ, β̂;h)]2.

10: end for
...

11: end for
12: end for
13: end for
14: Return the error matrix E.

For the MLP model, the parameters β in line 7 are the weights on the edges between the different
nodes of the networks. Also, the MLP model has S = 2 hyperparameters ψ1 =NH , the number of
hidden nodes, and ψ2 = λ, the weight decay hyperparameter. For the nonparametric KNN model,
there are no parameters, i.e. β = ∅, and S = 1 hyperparameter ψ1 = K , the number of neighbors.

Algorithm 5 shows how to compute multi-step forecasts for a given strategy using the error matrix
computed with Algorithm 4.

In the next section, we apply a bias and variance analysis to compare the multi-horizon strategies
with the single-horizon strategies.

116

Machine learning strategies for multi-step-ahead
time series forecasting

Algorithm 5 Multi-step forecasts using the error matrix computed with Algorithm 4.

{y1, . . . , yT }: Time series with T observations.
H : Forecast horizon.
L = {L1, . . . ,LH }: Set of horizons.
pmax: Maximum lag order.
m(·;ψ,β): Learning model with hyperparameters ψ and parameters β where ψ = [ψ1, . . . ,ψS]
and ψs ∈ Ψs(s = 1, . . . ,S).
E: Error matrix with dimensionality pmax × |Ψ1| × · · · × |ΨS | ×H

1: Compute the multi-step error matrix E using Algorithm 4.
2: for h← 1, . . . ,H do
3: (ph, ψ̂h) = argmin

p,ψ

∑
h′∈Lh E[p,ψ,h′].

4: Using ph lagged variables and the hyperparameters ψ̂h, estimate the parameters βh from
the complete data set D = {(xt−h, yt)} to obtain g(xt−h; ψ̂h, β̂h;h), where xt−h = [yt−h, . . . , yt−h−ph]

′.
5: Compute ŷT+h = g(xT ; ψ̂h, β̂h;h), the forecasts for horizon h.
6: end for
7: Return the forecasts {ŷT+1, . . . , ŷT+H }.

6.4 Bias and variance analysis

In this section, we consider the strategies that generate multi-step forecasts using a different model
at each horizon and where h-step ahead errors are included in the objective function for horizon h,
i.e. h ∈ Lh. We analyze these strategies using the methodology described in Section 4.3. We first
briefly discuss the role of the set Lh in the bias and variance components. Then, we consider Monte
Carlo simulations to effectively compute the bias and variance components for different strategies
and different DGPs.

Scenario C and D: Nonlinear model

Because the strategies minimize h-step ahead errors, the expression for the h-step ahead forecasts
can be written using the terminology defined in Section 4.3.1, as follows

g(xt; γ̂ ;h)

= µt+h|t + δ(rt;γ)︸ ︷︷ ︸
mh(rt ;γ)

+η(rt;γ)εη , (6.4.1)

where rt = [yt , . . . , yt−ph] contains ph lagged variables and γ = [β,ψ] includes both the parameters β
and the hyperparameters ψ. Recall that the conditional expectation µt+h|t appears in the previous
expression because of the h-step ahead forecast errors minimization.

The expression for the sum of the bias and variance components at horizon h for these strategies
can then be written as

Bh(xt) +Vh(xt)

= [µt+h|t −mh(rt;γ)]2 (6.4.2)

+ η(rt;γ)2. (6.4.3)

Recall that the set Lh has an impact on how the lag order and the hyperparameters are optimized
for the model at horizon h as can be seen in expression (6.3.8). Also, we can see in expression

117

Machine learning strategies for multi-step-ahead
time series forecasting

(6.4.1) that both the offset term δ(rt;γ) and the variability term η(rt;γ)εη depend on the lag order
and the model parameters γ . In consequence, the set Lh will have an impact on the offset and
variability terms, that have a direct influence on the bias and variance components in expressions
(6.4.2) and (6.4.3).

When Lh = {h}, which corresponds to the DIRECT strategy, the lag order and the hyperparameters
are selected by minimizing the sum of the forecast errors at horizon h, as can be seen in (6.3.8). If
additional horizons are included in Lh, then the sum will be computed using additional residuals
from other horizons. The increase in the number of residuals is likely to reduce the variability term
η(rt;γ) in (6.4.1) since it will become less dependent on each realization, which will in turn induce
a smaller variance component in (6.4.3).

However, because the model parameters for horizon h are selected by also minimizing the forecast
errors for µt+h′ |t with h′ , h, there will be an increase in the bias component that will depend on
how close µt+h′ |t is to µt+h|t, for all h′ included in Lh. In fact, the closer µt+h′ |t is to µt+h|t, the better
the model mh(rt;γ) will estimate µt+h|t and the smaller the bias component in (6.4.2).

In consequence, both the number of horizons in Lh and the distance between these horizons and the
horizon h will have an influence on the bias and variance components at horizon h. In particular, a
good bias and variance trade-off over the forecast horizon will depend on the set L = {L1, . . . ,LH }.

The best strategy will include horizons where the conditional expectation is not too far from the
one at horizon h to limit the increase in bias, and will include enough horizons to decrease the
variance. Finding the best trade-off between bias and variance components will ensure the smallest
MSE.

Ideally, the set Lh should be selected automatically from the data for each horizon. Achieving that
goal with validation methods will require an additional validation set which might not be available
with short time series. We leave the automatic selection of the horizons to include in Lh for future
work.

We now consider Monte Carlo simulations to effectively compute the bias and variance components,
as explained in Section 4.3.2.

We will consider the different strategies in Table 6.1. More precisely, we will consider REC, RJT2,
RTI, RJTL11 and RJT for recursive forecasts, and DIR, DJTL11 and DJT for direct forecasts.

The forecasts for the different strategies will be generated with the MLP and the KNN models, as
in Algorithm 5, for both the AR and STAR DGPs. We will not present the results of the NAR DGP
since they are similar to those of the AR DGP.

Let us first consider the AR DGP. The results with direct forecasts are given in Figures 6.1 and 6.2
for the MLP model and the KNN model, respectively.

In both Figures 6.1 and 6.2, we can see in the third column that DJT has a smaller variance than DIR
consistently over the horizon. By comparing Figure 6.2 with Figure 6.1, we can see that DIR-KNN
produce forecasts with a smaller variance than DIR-MLP. Consequently, the relative decrease in
variance for DJT-MLP compared to DIR-MLP is larger than DJT-KNN compared to DIR-KNN. Also,
for T = 400, DIR-KNN and DJT-KNN have a comparable variance component while DJT-MLP has a
smaller variance component than DIR-MLP.

The decrease in variance for the DJT strategies has also induced an increase in the bias component
for short horizons as can be seen in the second column of both Figures 6.1 and 6.2. This confirms
the fact that the DJT strategies put implicitly more weights on long horizons when selecting the lag
order and the hyperparameters. Also, by comparing the second column of both Figures 6.1 and 6.2,
we can see that the MLP model has a smaller bias component than the KNN model for all T . This

118

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

DIR−MLP
DJTL11−MLP
DJT−MLP

T = 50

Horizon
B

ia
s2

0.
0

0.
2

0.
4

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
00

0.
10

0.
20

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
5

1.
0

1.
5

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
02

0.
04

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

Figure 6.1: AR DGP. MSE decomposition of direct multi-horizon strategies with the MLP model.

can be explained by the fact that the MLP model includes the LIN model as a special case which is
not the case for the KNN model.

The last column of Figure 6.1 shows that DJT-MLP has a comparable performance to DIR-MLP
for the first horizons and smaller errors for longer horizons, due to the reduced variance for these
horizons. In Figure 6.2, we can see that the KNN model has larger errors for short horizons
(particularly noticeable for T = 400) and smaller or similar errors for longer horizons. Compared
to the MLP model, the error reduction is smaller with the KNN model.

If we compare DJTL11 and DJT with DIR in the last column of Figures 6.1 and 6.2, we can see that
DJTL11 does not suffer from the higher errors for short horizons as with DJT, and at the same time,
reduces the errors compared to DIR for longer horizons, but less than DJT. The second columns
show that DJTL11 does not suffer from a higher bias component as with DJT, while in the third
column, we can see that it has a smaller variance than DIR and a larger variance than DJT.

Because DJTL11 uses the set Lh = {h− 1,h,h+ 1}, the increase in bias is limited since µt+h−1|t and
µt+h+1|t is not expected to change too much compared to µt+h|t. In addition, the additional residuals
from these horizons can reduce the variance. This suggests that DJTL11 provides a good trade-off
between DIR and DJT. Again the error reduction from DIR to DJT is smaller for the KNN model
compared to the MLP model which has a larger variance.

The results with recursive forecasts are given in Figures 6.3 and 6.4 for the MLP and the KNN
model, respectively.

Recall that with recursive forecasts, if the model is parametric (as with the MLP model), the
parameters are estimated by minimizing one-step-ahead errors and do not depend on the set
L = {L1, . . . ,LH }. However, the selection of the lag order and the hyperparameters always depends
on the set L.

119

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

DIR−KNN
DJTL11−KNN
DJT−KNN

T = 50

Horizon
B

ia
s2

0.
0

0.
5

1.
0

1.
5

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
0

1.
0

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
0

0.
4

0.
8

1.
2

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2 4 6 8 10

Figure 6.2: AR DGP. MSE decomposition of direct multi-horizon strategies with the KNN model.

We can make the same observations about RTI, RJTL11 and RJT in Figures 6.3 and 6.4 (where
forecasts are generated recursively) as DIR, DJTL11 and DJT in Figures 6.1 and 6.2 (where forecasts
are generated directly).

In fact, in the last column of Figure 6.3, we can see that RJT-MLP has lower errors than RTI-MLP
at long horizons and similar error for short horizons. In Figure 6.4, the higher bias of RJT-KNN
compared to RTI-KNN is particularly noticeable for T = 100 and T = 400.

In the last column of Figure 6.3, we can clearly see that RJTL11-MLP is between RTI-MLP and
RJT-MLP, but it is less visible for RJTL11-KNN in Figure 6.4.

For the MLP model, we can see in Figure 6.3 that RJT2-MLP has comparable performance to
RJT-MLP (or equivalently RJT10-MLP), and both have smaller errors than RTI-MLP. This can
be explained by the fact that if the MLP model reduces to the LIN model, then the model is
well-specified and consequently, one-step-ahead minimization can provide better parameter esti-
mate than multi-step-ahead or multi-horizon minimization. The good performance of REC-MLP
(equivalently RJT1-MLP) can be seen in Figure 4.6.

In contrast to the MLP model, RJT2-KNN has higher errors than the other recursive strategies
as can be seen in the last column of Figure 6.4. This can be explained by the fact that recursive
forecasts with the KNN model for the AR DGP suffer from a higher variance as can be seen in the
third column but also in Figure 4.8 for REC-KNN (equivalently RJT1-KNN). In this case, RTI-KNN
reduces the variance component and provides smaller errors.

We now consider the nonlinear STAR DGP. In contrast to the linear AR DGP, the conditional
expectation is expected to change more over the horizon since the DGP is nonlinear.

The results with direct forecasts are given in Figures 6.5 and 6.6 for the MLP and the KNN model,
respectively.

120

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

RTI−MLP
RJT2−MLP
RJTL11−MLP
RJT−MLP

T = 50

Horizon
B

ia
s2

0.
00

0.
15

0.
30

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
00

0.
10

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

0.
5

1.
0

1.
5

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
00

0.
02

0.
04

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

0.
2

0.
4

2 4 6 8 10

Figure 6.3: AR DGP. MSE decomposition of recursive multi-horizon strategies with the MLP model.

As with the AR DGP, we can see in Figures 6.5 and 6.6 the higher bias of the DJT strategies
compared to the DIR strategies. However, the relative decrease in variance is less pronounced than
with the AR DGP. Finally, the difference between DJTL11 and DIR is small and is hard to see in the
last columns of Figures 6.5 and 6.6. The difference between DJTL11 and DIR is more noticeable in
the third column where we can see the smaller variance of DJTL11 for long horizons.

The results with recursive forecasts are given in Figures 6.7 and 6.8 for the MLP and the KNN
model, respectively.

Because both the model and the DGP are nonlinear, we know that recursive forecasts suffer from
the amplification of errors, as can be seen in Figure 4.9 for both REC-KNN and REC-MLP.

In the last column of Figures 6.7 and 6.8, we can see that the errors of RJT2 have a similar behavior
to the REC (or equivalently RJT1) strategy in Figure 4.9. This suggests that the parameters selected
by minimizing two-step ahead errors are close to the one selected by minimizing one-step-ahead
errors.

If we compare RJT2 with RTI and RJT for T = 400, we can see that the amplification of errors is
reduced since both strategies include the horizon h in their objective function. Also, if we compare
RTI with RJT, we can again see that RJT has higher errors at short horizons due to its higher bias
component. Finally, as with the AR DGP, it is hard to see the difference between RTI and RJTL11.

We can summarize the results of the bias and variance analysis as follows:

• Compared to the SINGLE strategies, the JOINT strategies suffer from a higher bias at short
horizons, but have a lower variance at long horizons.

The strategies that only include the previous and the next horizons into the objective for the
model at horizon h do not have a higher bias at short horizons compared to SINGLE strategies

121

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

RTI−KNN
RJT2−KNN
RJTL11−KNN
RJT−KNN

T = 50

Horizon
B

ia
s2

0.
0

0.
5

1.
0

1.
5

2 4 6 8 10

T = 50

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

3.
0

2 4 6 8 10

T = 100

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 100

Horizon

B
ia

s2

0.
0

0.
5

1.
0

1.
5

2 4 6 8 10

T = 100

Horizon

V
ar

ia
nc

e

0.
0

1.
0

2 4 6 8 10

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2.
0

2 4 6 8 10

T = 400

Horizon

M
S

E

0
2

4
6

8

2 4 6 8 10

T = 400

Horizon

B
ia

s2

0.
0

0.
6

1.
2

2 4 6 8 10

T = 400

Horizon

V
ar

ia
nc

e

0.
0

0.
4

0.
8

2 4 6 8 10

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
0

1.
0

2 4 6 8 10

Figure 6.4: AR DGP. MSE decomposition of recursive multi-horizon strategies with the KNN model.

as with the JOINT strategies. Also, they reduce the variance for long horizons compared to
the SINGLE strategies but less than the JOINT strategies.

• We observe a higher benefit from multi-horizon strategies when the forecasts are generated
directly rather than recursively.

• Concerning the time series length T , the benefit from using multi-horizon strategies instead
of single-horizon strategies is more pronounced with T = 100 rather than T = 50 and T = 400.
Also, multi-horizon strategies tend to have lower errors for long horizons compared to short
horizons.

• The difference in performance between multi-horizon and single-horizon strategies is more
important with the MLP model than with the KNN model, which can be explained by the
larger variance of the MLP model. This difference is also more important with the AR DGP
compared the STAR DGP, since the conditional expectation is more stable over the horizon
with the AR DGP.

6.5 Real-data experiments

As in Section 5.4, we carried out some experiments with the time series from the M3 and NN5
competitions. Details about the data and the methodology are given in Appendix A.

The tables that follow present the SMAPE and MASE forecast accuracy measures for different
forecasting strategies (by row) at different forecast horizons, together with average measures
and average rankings (by column), as explained in Section 5.4 . Because we can draw the same
conclusions from both the SMAPE and MASE measures, we will focus on the SMAPE measure. If
the results between these two measures differ, we will mention it explicitly. Also, the comparison
between the strategies is performed on all the columns, unless specified.

122

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

DIR−MLP
DJTL11−MLP
DJT−MLP

T = 50

Horizon
B

ia
s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
6

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
0

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

00
0.

00
15

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
2

0.
00

4

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

00
3

0.
00

6

2 4 6 8 12

Figure 6.5: STAR DGP. MSE decomposition of direct multi-horizon strategies with the MLP model.

We first compare the direct multi-horizon strategies with the MLP model for both the M3 and NN5
competitions. Then, we apply the same comparison with the KNN model. Finally, we consider
the recursive multi-horizon strategies for both the MLP and the KNN models, but only for the M3
competition2. Note that we will use the acronym DJTL in place of DJTL11 in the following. Also,
the NAIVE strategy is defined as ŷT+h = yT for h = 1, . . . ,H .

Let us first consider the results for the MLP model given in Tables 6.2 and 6.3.

The results for the M3 competition are presented in Table 6.2 and can be summarized as follows:

• For the first few horizons (i.e. h = 1,2,3), DIR-MLP has lower errors than DJT-MLP. This
confirms that the DJT strategy has higher errors at short horizons, notably due to a higher
bias component (see Figure 6.1).

• For longer horizons (e.g. h = 12 and h = 18), DJT-MLP has lower errors than DIR-MLP, which
confirms the benefit of the DJT strategy for long horizons, notably due to a lower variance
(see Figure 6.1).

• When considering the SMAPE measure, DJTL-MLP outperforms both DJT-MLP and DIR-MLP.
With the MASE measure, DJTL-MLP has lower errors than DIR-MLP and similar performance
than DJT-MLP. This confirms the advantage of considering only local horizons instead of all
horizons into the objective function when selecting the lag order and the hyperparameters.

The results for the NN5 competition are presented in Table 6.3 and can be summarized as follows:

• In contrast to the M3 competition, when considering averaged errors, DJT-MLP outperforms
DIR-MLP. In other words, restricting the models for all horizons to use the same lag order

2We did not consider the NN5 competition because of the heavier computational time of the RTI strategies with long
time series.

123

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0.
00

0.
04

2 4 6 8 12

DIR−KNN
DJTL11−KNN
DJT−KNN

T = 50

Horizon
B

ia
s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
6

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

00
6

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
3

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
0

2 4 6 8 12

Figure 6.6: STAR DGP. MSE decomposition of direct multi-horizon strategies with the KNN model.

Table 6.2: M3 competition. SMAPE and MASE forecast accuracy measures for direct multi-horizon
strategies with the MLP model.

Strategy Forecast horizon (h) Average Avg. rank
1 2 3 6 12 18 1-6 1-12 1-18

SMAPE
DJTL11-MLP 12.32 11.48 13.01 13.39 14.95 20.74 13.27 14.01 15.87 1.56
DJT-MLP 13.60 12.09 13.96 13.68 15.12 20.02 14.01 14.59 16.07 2.28
DIR-MLP 12.43 11.74 13.14 13.65 15.11 21.07 13.43 14.24 16.11 2.44
NAIVE 15.49 14.45 15.86 14.68 15.99 20.86 15.69 16.16 17.37 3.72

MASE
DJT-MLP 2.79 2.70 3.20 3.66 4.27 6.36 3.37 3.74 4.41 2.00
DJTL11-MLP 2.53 2.50 2.93 3.42 4.43 6.72 3.15 3.61 4.44 2.06
DIR-MLP 2.54 2.51 2.87 3.56 4.44 6.74 3.14 3.67 4.50 2.61
NAIVE 3.26 3.08 3.65 3.82 4.54 6.56 3.75 4.12 4.70 3.33

and the same hyperparameters allows to reduce the forecast errors compared to allowing a
different value for each horizon. Note however that the parameters of the MLP model are
allowed to be different at each horizon.

• DJTL-MLP has lower error than DIR-MLP for long horizons but higher errors for short
horizons as with the M3 competition.

124

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

RTI−MLP
RJT2−MLP
RJTL11−MLP
RJT−MLP

T = 50

Horizon
B

ia
s2

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
4

0.
00

8

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

01
5

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

00
4

0.
00

8

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

Figure 6.7: STAR DGP. MSE decomposition of recursive multi-horizon strategies with the MLP model.

Table 6.3: NN5 competition. SMAPE and MASE forecast accuracy measures for direct multi-horizon
strategies with the MLP model.

Strategy Forecast horizon (h) Average Avg. rank
1 2 3 7 14 21 56 1-7 1-14 1-21 1-28 1-35 1-42 1-49 1-56

SMAPE
DJT-MLP 13.63 12.50 12.80 18.65 17.95 40.39 17.06 16.51 17.66 20.42 20.10 22.23 22.67 22.23 21.53 1.79
DJTL11-MLP 15.05 13.48 12.50 18.45 18.04 40.64 16.88 16.99 17.99 20.68 20.28 22.36 22.78 22.33 21.62 2.07
DIR-MLP 14.86 13.36 12.43 18.72 18.46 40.76 17.27 16.96 17.96 20.76 20.37 22.43 22.86 22.41 21.73 2.50
MEAN 16.69 14.22 13.64 18.59 17.83 41.54 18.03 18.06 18.91 21.42 21.09 23.24 23.80 23.40 22.77 3.64

MASE
DJT-MLP 0.26 0.30 0.40 0.44 0.42 0.80 0.42 0.50 0.53 0.60 0.58 0.62 0.64 0.63 0.61 1.86
DJTL11-MLP 0.28 0.31 0.39 0.43 0.42 0.81 0.41 0.50 0.54 0.61 0.59 0.62 0.64 0.63 0.61 1.98
DIR-MLP 0.28 0.31 0.39 0.44 0.43 0.81 0.42 0.50 0.53 0.61 0.59 0.62 0.65 0.63 0.62 2.48
MEAN 0.33 0.34 0.44 0.43 0.41 0.82 0.44 0.54 0.57 0.64 0.62 0.65 0.68 0.67 0.65 3.68

Let us consider the results for the KNN model which are given in Tables 6.4 and 6.5. In contrast to
the MLP model, the KNN model does not have any parameter but only one hyperparameter (the
number of neighbors).

The results for the M3 competition are presented in Table 6.4 and can be summarized as follows:

• DIR-KNN outperforms DJT-KNN at short horizons, but the difference in performance between
the two strategies reduces with the horizons, and for h = 18, DJT-KNN has smaller errors than
DIR-KNN. In the simulation study, we observed a similar behavior due to a large increase in
bias for DJT-KNN at short horizons (see Figure 6.2).

125

Machine learning strategies for multi-step-ahead
time series forecasting

T = 50

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

RTI−KNN
RJT2−KNN
RJTL11−KNN
RJT−KNN

T = 50

Horizon
B

ia
s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 50

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

T = 50

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

0.
03

0

2 4 6 8 12

T = 100

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 100

Horizon

B
ia

s2

0.
00

0
0.

00
6

0.
01

2

2 4 6 8 12

T = 100

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

0.
02

0

2 4 6 8 12

T = 100

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

T = 400

Horizon

M
S

E

0.
00

0.
04

0.
08

2 4 6 8 12

T = 400

Horizon

B
ia

s2

0.
00

0
0.

01
0

2 4 6 8 12

T = 400

Horizon

V
ar

ia
nc

e

0.
00

0
0.

01
0

2 4 6 8 12

T = 400

Horizon

B
ia

s2
+

V
ar

ia
nc

e

0.
00

0
0.

01
5

2 4 6 8 12

Figure 6.8: STAR DGP. MSE decomposition of recursive multi-horizon strategies with the KNN model.

Table 6.4: M3 competition. SMAPE and MASE forecast accuracy measures for direct multi-horizon
strategies with the KNN model.

Strategy Forecast horizon (h) Average Avg. rank
1 2 3 6 12 18 1-6 1-12 1-18

SMAPE
DJTL11-KNN 13.12 11.95 13.55 14.20 16.35 20.54 13.77 14.87 16.38 1.67
DIR-KNN 13.10 12.21 13.65 14.26 16.58 20.72 13.83 14.86 16.42 1.83
NAIVE 15.49 14.45 15.86 14.68 15.99 20.86 15.69 16.16 17.37 2.94
DJT-KNN 17.83 15.09 17.31 16.70 17.39 20.18 17.09 17.31 18.07 3.56

MASE
DIR-KNN 2.77 2.60 3.21 3.76 5.00 6.61 3.38 3.89 4.57 1.89
DJTL11-KNN 2.80 2.59 3.22 3.78 4.96 6.53 3.37 3.91 4.58 2.22
NAIVE 3.26 3.08 3.65 3.82 4.54 6.56 3.75 4.12 4.70 2.39
DJT-KNN 4.35 3.97 4.54 4.65 5.32 6.42 4.57 4.80 5.19 3.50

Compared to DJT-MLP in Table 6.2, the increase in bias of DJT-KNN is larger which can be
explained by the fact that the MLP model has parameters that are allowed to change with the
horizon. The reduced flexibility of DJT-KNN makes it even worse than NAIVE. Finally, the
smaller error at h = 18 for DJT-KNN can be explained by a smaller variance for long horizons
compared to DIR-KNN and DJTL-KNN.

126

Machine learning strategies for multi-step-ahead
time series forecasting

Table 6.5: NN5 competition. SMAPE and MASE forecast accuracy measures for direct multi-horizon
strategies with the KNN model.

Strategy Forecast horizon (h) Average Avg. rank
1 2 3 7 14 21 56 1-7 1-14 1-21 1-28 1-35 1-42 1-49 1-56

SMAPE
DJTL11-KNN 14.63 11.67 11.63 17.47 18.34 41.18 17.05 16.12 17.40 20.29 20.01 22.22 22.71 22.30 21.64 1.79
DJT-KNN 14.32 12.19 12.23 17.95 17.69 41.38 17.10 16.54 17.60 20.40 20.12 22.32 22.82 22.40 21.73 2.14
DIR-KNN 14.66 12.12 11.64 17.78 18.38 41.48 17.27 16.28 17.47 20.35 20.06 22.25 22.75 22.34 21.69 2.27
MEAN 16.69 14.22 13.64 18.59 17.83 41.54 18.03 18.06 18.91 21.42 21.09 23.24 23.80 23.40 22.77 3.80

MASE
DJTL11-KNN 0.28 0.28 0.37 0.41 0.43 0.82 0.41 0.48 0.53 0.60 0.58 0.62 0.65 0.63 0.62 1.89
DJT-KNN 0.28 0.29 0.39 0.42 0.41 0.82 0.42 0.50 0.53 0.61 0.58 0.62 0.65 0.64 0.62 2.14
DIR-KNN 0.28 0.29 0.37 0.42 0.43 0.83 0.42 0.49 0.53 0.60 0.58 0.62 0.65 0.63 0.62 2.23
MEAN 0.33 0.34 0.44 0.43 0.41 0.82 0.44 0.54 0.57 0.64 0.62 0.65 0.68 0.67 0.65 3.73

• DJTL-KNN and DIR-KNN have comparable performances as can be seen by considering both
SMAPE and MASE accuracy measures. In particular, DJTL-KNN is a better alternative than
DJT-KNN since it does not increase the errors at short horizons as with DIR-KNN.

The results for the NN5 competition are presented in Table 6.5 and can be summarized as follows:

• In contrast to the M3 competition, DJT-KNN has comparable performance to DIR-KNN which
means that we can achieve the same performance by using the same lag order and the same
number of neighbors for all the H = 56 horizons instead of using a different one for each
horizon.

• When considering averaged errors, DJTL-KNN outperforms both DJT-KNN and DIR-KNN.

We now consider the multi-horizon recursive strategies for the M3 competition. Recall that REC
(equivalently RJT1) and RJT (equivalently RJT18 since H = 18) are two extremes and RJT2 is in
between. RTI and RJT are also two extremes with RJTL11 in between.

The results for the MLP and the KNN models are presented in Tables 6.6 and 6.7, respectively, and
can be summarized as follows:

• REC has smaller errors than RJT at short horizons (h = 1,2), and vice versa for long hori-
zons (h = 12,18). These results are consistent with the findings of the simulation study
in Section 6.4, where we have seen the smaller variance of RJT compared to REC for long
horizons.

Also, RJT2 outperforms both REC and RJT with the MLP model, while it has better per-
formance than REC and similar performance to RJT with the KNN model. Because RJT2
minimizes two-step ahead errors, it improves the performance for long horizons compared to
REC and does not penalize short horizons as RJT.

• RTI has smaller errors than RJT for short horizons (h = 1,2 and 3), and vice versa for long
horizons (h = 12 and h = 18). Compared to REC, the results are mixed but REC has a
better ranking. The lack of nonlinearity and the short time series that characterize the M3
competition data can favor REC over RTI. Finally, RJTL has larger errors than RJT for long
horizons (but smaller than RTI) and vice versa for short horizons.

127

Machine learning strategies for multi-step-ahead
time series forecasting

Table 6.6: M3 competition. SMAPE and MASE forecast accuracy measures for recursive multi-horizon
strategies with the MLP model.

Strategy Forecast horizon (h) Average Avg. rank
1 2 3 6 12 18 1-6 1-12 1-18

SMAPE
RJT2-MLP 12.28 11.40 13.22 12.75 15.07 19.55 12.81 13.76 15.15 1.17
REC-MLP 12.55 11.65 13.59 12.97 15.23 19.98 13.05 14.01 15.42 2.94
RJT-MLP 12.81 11.78 13.50 12.93 15.09 19.74 13.29 14.06 15.44 3.00
RJTL11-MLP 12.30 11.54 13.19 12.87 15.44 20.58 12.99 14.05 15.60 3.39
RTI-MLP 12.39 11.64 13.34 13.21 15.94 20.91 13.11 14.22 15.88 4.56
NAIVE 15.49 14.45 15.86 14.68 15.99 20.86 15.69 16.16 17.37 5.94

MASE
RJT2-MLP 2.58 2.54 3.01 3.32 4.33 5.88 3.12 3.56 4.14 1.61
REC-MLP 2.56 2.53 3.09 3.44 4.36 6.01 3.13 3.60 4.20 2.44
RJT-MLP 2.72 2.70 3.16 3.38 4.35 6.00 3.29 3.68 4.27 3.28
RJTL11-MLP 2.58 2.48 2.96 3.34 4.49 6.06 3.15 3.66 4.29 3.50
RTI-MLP 2.51 2.47 3.03 3.44 4.51 6.15 3.17 3.69 4.34 4.28
NAIVE 3.26 3.08 3.65 3.82 4.54 6.56 3.75 4.12 4.70 5.89

Table 6.7: M3 competition. SMAPE and MASE forecast accuracy measures for recursive multi-horizon
strategies with the KNN model.

Strategy Forecast horizon (h) Average Avg. rank
1 2 3 6 12 18 1-6 1-12 1-18

SMAPE
RJT2-KNN 13.04 11.94 13.48 13.80 15.63 19.75 13.72 14.48 15.87 2.36
RJT-KNN 13.23 11.86 13.58 14.10 15.40 19.80 13.85 14.56 15.88 2.56
RJTL11-KNN 13.04 11.86 13.45 13.73 15.73 20.02 13.70 14.52 15.91 2.58
REC-KNN 13.10 12.20 13.54 14.05 15.94 20.07 13.82 14.66 16.05 3.67
RTI-KNN 13.12 12.11 13.50 13.93 15.81 20.11 13.90 14.71 16.07 3.83
NAIVE 15.49 14.45 15.86 14.68 15.99 20.86 15.69 16.16 17.37 6.00

MASE
RJT-KNN 2.69 2.60 3.26 3.72 4.51 6.17 3.38 3.79 4.37 2.17
RJTL11-KNN 2.75 2.61 3.20 3.54 4.61 6.21 3.31 3.77 4.37 2.36
RJT2-KNN 2.75 2.68 3.26 3.61 4.67 6.13 3.35 3.80 4.40 3.14
RTI-KNN 2.77 2.65 3.24 3.61 4.61 6.21 3.36 3.82 4.41 3.67
REC-KNN 2.77 2.68 3.27 3.67 4.70 6.20 3.36 3.83 4.42 3.89
NAIVE 3.26 3.08 3.65 3.82 4.54 6.56 3.75 4.12 4.70 5.78

128

Machine learning strategies for multi-step-ahead
time series forecasting

Overall, we have seen that many factors can affect the performance of multi-horizon strategies
compared to single-horizon strategies.

With the MLP model, multi-horizon strategies have provided better forecasts than single-horizon
strategies for both the M3 and NN5 competitions. With the KNN model, multi-horizon strategies
have better forecasts with the NN5 competition but poor forecasts with the M3 competition.

In addition to the different class of models considered in the KNN and the MLP models, the MLP
model has a set of parameters that are independently selected for each forecast horizon. Also, the
M3 time series are short and noisy while the NN5 time series are longer and less noisy.

The results of the comparison between multi-horizon and single-horizon strategies are similar
for both recursive and direct forecasts. In particular, the DJT strategy has always obtain better
performance for long horizons compared to the DIR strategy. However, the DJT strategy has often
higher errors than the DIR strategy for short horizons.

The DJTL strategy is a better alternative to DJT since it does not suffer from higher errors at
short horizons, and at the same time improves the forecasts at long horizons compared to the DIR
strategy. The DJTL strategy has often comparable performance to the best between the DIR and
DJT strategies. However, the error reduction of DJT compared to DIR for long horizons is typically
larger than the DJTL strategy.

6.6 Concluding remarks

Using a different model for each forecast horizon provides a large flexibility to generate multi-step
forecasts. However, if each model is selected independently from the other models, potential
irregularities in consecutive forecasts can arise if very different models are used at each horizon.
These irregularities are manifest as a contribution to the forecast variance, especially with nonlinear
machine learning models and short time series.

We address this issue by proposing multi-horizon strategies that select the lag order and the
hyperparameters of each model by minimizing forecast errors over multiple horizons rather
than just the horizon of interest. We still allow a certain flexibility since the parameters can be
independently selected for each horizon.

We considered different multi-horizon strategies depending on which horizons are used for each
model, and this, consequently, reflects on the way the lag order and the hyperparameters are
selected. In particular, we considered the extreme case where all the horizons are used by each
model, which is the opposite of the case where the models are independently selected. We also
considered an intermediate configuration where only local horizons are used for each model.

Exploiting the relatedness between different forecasting tasks to improve multi-step forecasts has
received little attention in the forecasting literature. There have been some attempts to apply
some existing multi-response and multi-task methods for multi-step forecasting for example in Liu
(1996); Kline (2004); Franses and Legerstee (2009). However, the success has been limited, notably
due to the limited amount of data with univariate time series. In contrast, the multi-horizon
strategies we proposed can be easily applied with short time series and with any machine learning
model.

We compared the multi-horizon strategies with the single-horizon strategies in a bias and variance
study as well as with the time series from the M3 and NN5 competitions. The conclusions for
recursive and direct forecasts are often similar and can be summarized as follows.

129

Machine learning strategies for multi-step-ahead
time series forecasting

Constraining all the models to use the same lag order and hyperparameters for all horizons induces
a large increase in bias for short horizons, but allows a large decrease in variance for long horizons,
compared to using a different model at each horizon.

When the lag order and the hyperparameters are allowed to change for each horizon but are
selected using forecast errors from local horizons, we did not observe an increase in bias for short
horizons while the variance is still lower for long horizons compared to selecting each model
independently. However, when constraining all the models to have the same lag order and the same
hyperparameters effectively decrease the errors compared to selecting all the models independently,
the error decrease for long horizons is lower when only local horizons are considered. Also, we
observed a more important variance decrease with the AR and NAR DGPs compared to the STAR
DGP; in other words when the DGP is linear or weakly nonlinear.

With the M3 time series, we have effectively observe larger errors at short horizons and smaller
errors for long horizons when all the models have the same lag order and hyperparameters, but
not with the NN5 time series. The advantage of only using local horizons has been confirmed with
both the M3 and NN5 time series. Finally, we observed a better performance of multi-horizon
strategies with the MLP model compared to the KNN model, which can be explained by the larger
variance of the forecasts generated with the MLP model.

Overall, the results suggest that better forecasts are generated with multi-horizon strategies when
the conditional mean does not change too much with the horizon, the machine learning model is
highly flexible and the time series is short. Also, the strategy that only considers local horizons
provides a better bias and variance trade-off than the strategy which constrains all the models to
use the same lag order and hyperparameters.

130

Chapter 7

The Global Energy Forecasting Competi-

tion 2012

This chapter is heavily based on the following publication:

• S Ben Taieb and RJ Hyndman (August 2013). A gradient boosting approach to the Kaggle
load forecasting competition. International Journal of Forecasting, 1–19.

We participated in the Load Forecasting track of the Global Energy Forecasting Competition 2012.
The competition involved a hierarchical load forecasting problem. We were required to backcast
and forecast hourly loads (in kW) for a US utility with 20 geographical zones. This chapter describes
and analyses the approach used by our team TinTin (Souhaib Ben Taieb and Rob J Hyndman),
which ranked fifth out of 105 participating teams.

7.1 Introduction

The Global Energy Forecasting Competition 2012 (GEFCom2012) has been organized by the IEEE
Working Group on Energy Forecasting (WGEF)1 which focuses on the practical needs of the utilities.
The goal of the GEFCom2012 competition was to (Hong, Pinson, and Fan, 2013)

• “improve the forecasting practices of the utility industry”,

• “bring together state-of-the-art techniques for energy forecasting”,

• “bridge the gap between academic research and industry practice”,

• “promote analytics in power and energy education”, and

• “prepare the industry to overcome the forecasting challenges posed by the smart grid world”.

The competition was active for two months, starting the 1st September 2012 and ending on 31st
October 20122 and included two different tracks: load forecasting and wind forecasting.

The Kaggle platform3 has been used to host the GEFCom2012 competition. Kaggle is an online
platform that allows companies to organize predictive modeling competitions, and data scientists
from all over the world compete to build the best models and produce the best predictions.

1www.drhongtao.com/ieee-wgef
2Note that this is also the birthday of our son Harone.
3www.kaggle.com

131

www.drhongtao.com/ieee-wgef
www.kaggle.com

Machine learning strategies for multi-step-ahead
time series forecasting

Figure 7.1: Photo of the eight winning teams members for the Global Energy Forecasting Competition
2012 (GEFCOM 2012) taken at the IEEE PES GM meeting in Vancouver, Canada.

The standard Kaggle rules include the following features:

• The data and a description of the problem is available on the competition webpage4

• The initial dataset is split into a learning dataset and a testing dataset. All the teams are
provided with the learning set, with which they will build and learn their models.

• Each team can submit its predictions for a subset of the complete testing data (e.g. 20% of
testing data) and these submissions are scored immediately.

• There is a public leaderboard where the actual best score of each time is displayed.

• In order to prevent teams to retrieve the testing data, each team is limited to two submissions
per day.

• A discussion forum is also available where both the administrators and participants can ask
questions, share ideas and findings with each other.

This approach is different from the traditional centralized communication scheme where the
competitors were only able to communicate with the administrators but not with other competitors.

4www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting

132

www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting

Machine learning strategies for multi-step-ahead
time series forecasting

In addition, the results on the complete testing data and ranks were only available after the end of
the competition.

We have participated to the load forecasting track of GEFCom2012. Our team has ranked fifth out
of 105 participating teams. The winning teams of GEFCom2012 have been announced in a press
release of the IEEE Power & Energy Society5 and have been broadcasted by some media channels
including Yahoo Finance6. Also, our team has been awarded the IEEE Power & Energy Society
award for ranking fourth in the Load forecasting track of the GEFCom2012 competition.

We give more details about the load forecasting track in the next section. More information about
the wind forecasting track can be found in Hong, Pinson, and Fan (2013).

7.2 The load forecasting track

Load forecasting is critical for utilities notably in order to better plan electricity demand, and
energy market activities. Hong (2010) provides a literature review of the different techniques used
for load forecasting.

The goal of the load forecasting track was to encourage new ideas on the following aspects (Hong,
Pinson, and Fan, 2013): data cleansing, hierarchical forecasting, special days forecasting, temperature
forecasting, ensemble forecasting and integration.

The load forecasting track involved a hierarchical forecasting problem. We were required to
backcast and forecast hourly loads (in kW) for a US utility with 20 geographical zones. Thus, 21
separate time series needed to be backcast and forecast: the 20 zonal level series, and the aggregate
series.

The electricity demand is subject to a range of factors, including weather conditions, calendar
effects, economic activity, population growth and electricity prices. However, we were required to
use only temperatures and calendar information.

The available data consisted of the hourly loads for the 20 zones, and hourly temperatures from 11
weather stations, from the first hour of 1 January 2004 to the sixth hour of 30 June 2008 (4.5 years
of hourly data). We are not aware of the locations of the 20 zones and the 11 weather stations, and
in particular, we do not know which stations are located in or near which zones.

Demand data were missing for the following eight non-consecutive weeks (although temperature
data were available for these periods): 2005/3/6 – 2005/3/12; 2005/6/20 – 2005/6/26; 2005/9/10 –
2005/9/16; 2005/12/25 – 2005/12/31; 2006/2/13 – 2006/2/19; 2006/5/25 – 2006/5/31; 2006/8/2
– 2006/8/8; 2006/11/22 – 2006/11/28.

Our task was to forecast the hourly electricity load during these eight weeks, as well as for the week
following the end of the available data, namely 2008/7/1 – 2008/7/7. No actual temperatures were
given for this additional week.

Consequently, our task was to develop models which take temperature and calendar information
as inputs, and predicts electricity load as the output. Our models will not explicitly take account
of economic changes, population changes or price changes, as we do not have any available data on
these variables. In any case, for short-term forecasting (up to one week ahead), these variables are
unlikely to be useful predictors.

5http://ieee-pes.org/ieee-pes-announces-the-eight-winning-teams-for-gefcom2012
6http://finance.yahoo.com/news/ieee-power-energy-society-announces-120700338.html

133

http://ieee-pes.org/ieee-pes-announces-the-eight-winning-teams-for-gefcom2012
http://finance.yahoo.com/news/ieee-power-energy-society-announces-120700338.html

Machine learning strategies for multi-step-ahead
time series forecasting

The forecasts were evaluated using a Weighted Root Mean Squared Error (WRMSE) given by√∑
hwh(ŷt+h − yt+h)2∑

hwh
, (7.2.1)

where ŷ and y are the forecasted and actual values, with wh being the weight for horizon h.

Higher weights have been assigned for the aggregated series and the forecasted weeks, compared
to the disaggregated series and the backcasted weeks. More precisely, the forecasted and the
backcasted weeks of the aggregated series were assigned the weights 160 and 20, respectively.
Similarly, the disaggregated series were assigned the weights 8 and 1.

A benchmark model has been included in the competition in order to evaluate the improvement of
the newly proposed methods. The benchmark model is a simple but yet effective linear model (in
parameters) that includes main effects and interaction effects of load, temperature and calendar
variables. More details about the benchmark model can be found in Hong (2010).

A wide range of models and methodologies have been used by the different teams of the load
forecasting track. Among the top five teams, different models have been used including gaussian
process regression, gradient boosting, multiple linear regression and semi-parametric regression.
More details can be found in Hong, Pinson, and Fan (2013).

Our Team, called TinTin, ranked fifth out of 105 participating teams. Team TinTin consisted of
Souhaib Ben Taieb (PhD student at Université Libre de Bruxelles, Belgium) and Rob J Hyndman
(Professor of Statistics at Monash University, Australia, and PhD co-supervisor for Souhaib).
Souhaib wrote all of the code and made all of the submissions. Rob’s involvement was solely to
provide advice and suggestions when Souhaib asked for, and to help in writing the report (Ben
Taieb and Hyndman, 2013).

We used separate models for each hourly period, with component-wise gradient boosting to estimate
each model using univariate penalised regression splines as base learners (see Section 2.2.4). Our
models allow for the electricity demand to change with time-of-year, day-of-week, time-of-day, and
on public holidays, with the main predictors being current and past temperatures as well as past
demand. The next section will provide more details about the methodology and models we used.

7.3 Methodology of the TinTin team

7.3.1 Data analysis and preprocessing

Figure 7.2 shows the average demand for all zones during the period of the data. The average
demand varied greatly across zones with Zone 18 having the highest demand levels and Zone 4
the least. By exploring the data, we noticed that Zones 3 and 7 contain identical data, and Zone 2
contains values that are exactly 92.68% of the demand values in Zones 3 and 7. Finally, Zone 9
contained very erratic demand patterns which did not seem to be related to the temperature values
(see Figure 7.3). It appeared later that Zone 9 was an industrial customer load, which is largely not
weather sensitive (Hong, Pinson, and Fan, 2013).

Figure 7.4 shows the hourly electricity demand for Zone 18. The months are marked with vertical
gold lines. The periods shaded gray correspond to the weeks in which predictions of electricity
demand were required. No demand data were available for these periods.

To see the intra-day patterns, we plot in Figure 7.5 the demand for Zone 18 for one month during
2005. There is a clear time of day effect, but no obvious day-of-week effect.

134

Machine learning strategies for multi-step-ahead
time series forecasting

Figure 7.6 gives the hourly temperature data for all 11 weather stations. Again, the months are
marked with vertical gold lines and the gray shaded regions correspond to the weeks in which
predictions of electricity demand were required. For the first eight of these weeks, temperature
data were available, but for the last week (beginning 1 July 2008), neither temperature nor demand
data were available.

Electricity demand is subject to a wide variety of exogenous variables including calendar effects.
Figure 7.7 shows that there is a clear time-of-year effect in the demand data with peaks in mean
demand around February and July, and troughs in April/May and October. In others words, winter
and summer are showing high demand while fall and spring have lower demand.

The average demand for each month and each day of the week is plotted in Figure 7.8. Because the
day-of-week pattern is similar for all months, it is unlikely to have a strong interaction between
day-of-week and time-of-year.

Boxplots of the demand by day of week are shown in Figure 7.9. While the day-of-week effect is
relatively small, there is a drop in demand for the weekends.

We look at the way demand changes with the time of day in Figures 7.10 and 7.11. Here, hour 0
corresponds to 12am–1am, hour 1 corresponds to 1am–2am, and so on. The night-time pattern is
similar for the two plots, but there is a difference during the working hours (8am–5pm).

Figure 7.12 shows for each time of day the demand in Zone 18 plotted against current temperature
from station 9. There is a clear non-linear relationship, indicating current temperature is an
important predictor of demand. For temperatures above 20◦C, air conditioning usage drives
demand, whereas for temperatures below 15◦C, heating drives demand. Similar but weaker

Gwh

Zone 4
Zone 8
Zone 5
Zone 1

Zone 13
Zone 14
Zone 16
Zone 10
Zone 17
Zone 15

Zone 9
Zone 19
Zone 20
Zone 11
Zone 12

Zone 2
Zone 6
Zone 3
Zone 7

Zone 18

0 50 100 150 200

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7.2: Average demand for each zone.

135

Machine learning strategies for multi-step-ahead
time series forecasting

Zone 9
D

em
an

d
(G

W
)

0 2000 4000 6000 8000 10000 12000 14000

0
20

40
60

80
10

0

Figure 7.3: Hourly demand (GW) for Zone 9, an industrial customer load.

relationships are seen in plots against lagged temperatures. Due to thermal inertia in buildings,
it is important to consider lagged temperatures as well as current temperatures in any demand
forecasting model.

Figure 7.13 shows current demand (at hour p) plotted against lagged demand for different lags (i.e.
at hour p− i with i = 1, . . . ,48). We can see the relationship between these variables due to the serial
dependence within the demand time series. In particular, we see a stronger dependence with lags
corresponding to the same hour of the day. For example, in Figure 7.13, we can see that there is a
stronger dependence between demand at hour p and both p − 24 (the day before) and p − 48 (two
days before).

Before developing any forecasting models, we pre-processed the data to avoid some potential
problems. First, we removed leap days to have 365 days for each year. This avoided problems
with uneven seasonal periods, and resulted in only a small loss of information. Second, we took
a log transformation for the demand. This is to stabilize the variance of the time series across
time. There were also some outliers and unusual features in the data which we corrected before
proceeding.

We identified some outliers in site 8 for the temperature data, and replaced them with the data of
the same period in the closest site in terms of Euclidean distance.

Zone 4 had some outliers in demand. We used Loess for fitting and then classified a point yt as
an outlier if yt − ŷt > median(yt − ŷt) + k ∗MAD where ŷt is the Loess fit of yt, MAD is the mean
absolute deviation and k is chosen so that the probability of an outlier is 0.002 under a normal
distribution. Then, the outliers have been replaced by the mean of the data.

For Zone 10, there was a big jump in demand in year 2008 (see Figure 7.15). We computed the
mean before the jump and the mean after the jump on the log-transformed data. Then we took the

136

Machine learning strategies for multi-step-ahead
time series forecasting

Zone 18 − 2004

D
em

an
d

(G
W

)

10
0

20
0

30
0

40
0

50
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Zone 18 − 2005

D
em

an
d

(G
W

)

10
0

20
0

30
0

40
0

50
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Zone 18 − 2006

D
em

an
d

(G
W

)

10
0

20
0

30
0

40
0

50
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Zone 18 − 2007

D
em

an
d

(G
W

)

10
0

20
0

30
0

40
0

50
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Zone 18 − 2008

D
em

an
d

(G
W

)

10
0

20
0

30
0

40
0

50
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 7.4: Hourly demand (GW) for Zone 18.

137

Machine learning strategies for multi-step-ahead
time series forecasting

difference and removed the jump in 2008. For the final forecasts, we restored the jump into the
forecasts.

7.3.2 Forecasting methodology

The competition involved a hierarchical load forecasting problem with 20 zonal level series, and
the aggregate series. We used a bottom-up approach, that is we forecast each zone independently
and then we took the sum of the 20 zonal forecasts to obtain forecasts for the aggregate (Fliedner,
2001).

For each of the twenty zones, we were required to backcast the demand for eight in-sample
weeks for which the temperature at various sites was provided. Because we do not know which
temperature site corresponds to which zone, the temperatures from all sites are potential predictors
in each model. We used a testing week (the last week of the available data) to determine which sites
to use for each zone. Figure 7.16 gives the root mean squared error (RMSE) obtained on the testing
week using the real temperature (in blue) and the forecasted temperature (in red) from the eleven
sites for ten zones. We can see that the difference in forecasts obtained using the real temperature
(in blue) at different sites can be huge. Consequently, when forecasting the eight in-sample weeks,
we use, for each zone, the site which minimizes the error over the testing week.

For the eight in-sample weeks, data was available before and after the week for demand and
during the week for the temperature. The data after each of the in-sample weeks is also useful for
predicting the demand values during the in-sample weeks (although this is not possible in real
forecasting operations). In order to use this data, we fitted two forecasting models. The first model
was estimated in the usual way using data available up to the start of the in-sample week. The

Demand for Zone 18 (18 Sep 2005 − 17 Oct 2005)

Week

D
em

an
d(

G
W

)

1 2 3 4 5

10
0

15
0

20
0

25
0

30
0

Figure 7.5: Hourly demand (GW) for one month for Zone 18 from Sunday 18 September 2005 to
Monday 17 October 2005.

138

Machine learning strategies for multi-step-ahead
time series forecasting

Stations 1−11 : 2004

Te
m

pe
ra

tu
re

 (
de

g
C

)

−
10

0
10

20
30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Stations 1−11 : 2005

Te
m

pe
ra

tu
re

 (
de

g
C

)

−
20

0
10

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Stations 1−11 : 2006

Te
m

pe
ra

tu
re

 (
de

g
C

)

−
10

0
10

20
30

40

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Stations 1−11 : 2007

Te
m

pe
ra

tu
re

 (
de

g
C

)

−
20

0
10

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Stations 1−11 : 2008

Te
m

pe
ra

tu
re

 (
de

g
C

)

−
10

0
10

20
30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 7.6: Hourly temperatures for 11 weather stations from the first hour of 1 January 2004 to the
sixth hour of 30 June 2008.

139

Machine learning strategies for multi-step-ahead
time series forecasting

10
00

15
00

20
00

25
00

30
00

Demand by time of year

Time of year

To
ta

l D
em

an
d

(G
W

)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 7.7: Total demand plotted against the time of year. The smoothed mean demand is shown as a red
line.

second model reversed the time ordering of the data so we were back-casting using data available
after the end of the in-sample week. We expect the forecasts to do best at the beginning of the week,
and the backcasts to do best at the end of the week, because they involve data closer to the days
being predicted. So, after estimating the two sets of models, we took a weighted combination of
both sets of forecasts to produce the final forecasts. More precisely, if we denote ŷ(F)

t+h, the forward

forecasts and ŷ(B)
t+h, the backward forecasts with h = 1, . . . ,168, then the final forecasts are given by

ŷt+h = αhŷ
(F)
t+h + (1−αh)ŷ(B)

t+h

where αh = sigmoid(−7 + 14∗h
168) and sigmoid(x) = 1/(1 + e−x) is the sigmoid function.

Forecasts were also required for one out-of-sample week without temperature data. in contrast
to the in-sample weeks, temperatures were not provided for the out-of-sample week. So we had
to forecast the temperatures for this week and used these when forecasting demand during that
week. We used the average temperature at the same period across the years as forecasts, shown
in Figure 7.17. Differences between out-of-sample forecasts obtained using different temperature
sites are not as large as for the in-sample weeks as can be seen in Figure 7.16 (see red bars). This
is because we do not have actual temperatures in that week, and our forecast temperatures have
a smaller range than the actual temperatures. So, for out-of-sample forecasts, we average the
forecasts obtained from the three best temperature sites when forecasting demand in order to
reduce the variance of the forecasts. These sites are also shown in Figure 7.16.

Since the demand patterns vary greatly during the year, and for computational convenience, we did
not use the whole demand data to estimate our models. Instead, for each of the available years, we
used part of the data around the week to be forecasted. More precisely, we computed the average
temperature for the week to be forecasted and, for each year, we select the 12 consecutive weeks
around this week which have the closest average temperature. Then we filtered the demand data

140

Machine learning strategies for multi-step-ahead
time series forecasting

13
00

15
00

17
00

19
00

Mean demand by month and day of week

To
ta

l d
em

an
d

(G
W

)

● ●

● ●

●

● ●

●

●

●

●

●

●

●

● ● ●
●

●
●

●

● ●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●
●

● ●

● ●

●
●

●

●

●

●
●

●
●

●

Mon Tue Wed Thu Fri Sat Sun

Jan

Feb

Mar

Apr

May

Jun

Jul
Aug

Sep

Oct

Nov

Dec

Figure 7.8: Average total demand (GW) by month and day of week.

●
●
●
●

●●
●●
●
●
●●
●

●●
●●●

●
●

●
●
●
●
●
●

●●

●
●

●

●
●
●

●●●
●●

●
●

●

●
●

●●●
●

●

●

●
●
●

●

●

●
●
●

●
●
●

●

●

●●●
●
●

●

●
●

●●

●●
●
●
●
●
●

●●
●●
●●●
●●
●●
●
●●●
●●

●
●
●

●
●
●
●●●●
●

●

●

●

●

●

●

●

●●
●
●
●
●

●●●●●

●

●
●

●●

●●
●●

●
●
●
●●●

●

●
●
●●●
●
●
●●●●●●●
●●

●
●●
●●●
●

●
●

●
●●

●
●
●●

●●

●
●

●

●●
●●●●
●
●

●

●
●
●
●

●
●
●
●
●
●
●
●●●
●

●
●●

●●

●●●●●●●
●
●

●●

●
●

●

●

●

●
●

●

●
●●
●
●
●

●
●
●
●

●

●
●
●

●●

●
●
●

●
●●●
●●
●
●●●●
●
●●●
●
●●
●

●●
●

●
●●
●●●
●●●
●
●

●
●
●●
●●●
●
●●
●●●●●●●●

●●

●●●
●●
●●
●
●●●
●
●
●●●
●●

Mon Tue Wed Thu Fri Sat Sun

10
00

15
00

20
00

25
00

30
00

Day of week

To
ta

l d
em

an
d

(G
W

)

Figure 7.9: Boxplots of total demand by day of week.

141

Machine learning strategies for multi-step-ahead
time series forecasting

●

●
●●

●

●
●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●
●

●●

●
●●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●●
●

●

●

●●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●●
●

●●
●

●

●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●
●

●
●
●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●
●●

●

●
●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●●

●●
●●

●

●●

●●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●●

●
●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●
●
● ●

●●
●●●

●

●

●
●
●
●●

●

●●

●

●

●●

●●
●

●

●

●
●●

●
●●
●
●
●

●
●
●

●

●
●

●

●
●●

●

●
●
●

●
●
●
●●

●

●

●
●

●●

●

●●

●

●

●
●

●●

●

●

●
●

●

●
●

●●●
●

●

●
●●

●

●
●
●●

●
●

●

●

●

0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23

10
00

15
00

20
00

25
00

30
00

Weekdays

Hour of day

To
ta

l d
em

an
d

(G
W

)

Figure 7.10: Boxplots of demand by time of day for Monday–Friday.

●●

●
●●
●

●

●
●●
●
●

●

●

●

●
●●
●●

●

●

●

●
●●
●●

●

●●
●
●
●

●
●
●●

●
●●

●●

●

●
●
●

●
● ●

●
●●

●
●●

●

●
●
●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23

10
00

15
00

20
00

25
00

30
00

Weekends

Hour of day

To
ta

l d
em

an
d

(G
W

)

Figure 7.11: Boxplots of demand by time of day for Saturday–Sunday.

142

Machine learning strategies for multi-step-ahead
time series forecasting

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [12 midnight,1:00]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [2:00,3:00]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [5:00,6:00]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [6:00,7:00]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [8:00,9:00]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30
10

00
15

00
20

00
25

00
30

00

Time: [11:00,12noon]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [12noon,13:00]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [14:00,15:00]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [17:00,18:00]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [18:00,19:00]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [20:00,21:00]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

−10 0 10 20 30

10
00

15
00

20
00

25
00

30
00

Time: [23:00,12 midnight]

Temperature (deg C)

D
em

an
d

(G
W

)

Workday
Non−workday

Figure 7.12: Hourly demand (GW) plotted against temperature (degrees Celsius) for Zone 18 and
station 9.

143

Machine learning strategies for multi-step-ahead
time series forecasting

1000 2000 3000

10
00

20
00

30
00

(demand[p−1],demand[p])

p−1

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−3],demand[p])

p−3

p
1000 2000 3000

10
00

20
00

30
00

(demand[p−6],demand[p])

p−6

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−8],demand[p])

p−8

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−9],demand[p])

p−9

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−11],demand[p])

p−11

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−14],demand[p])

p−14
p

1000 2000 3000

10
00

20
00

30
00

(demand[p−16],demand[p])

p−16

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−17],demand[p])

p−17

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−19],demand[p])

p−19

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−22],demand[p])

p−22

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−24],demand[p])

p−24
p

1000 2000 3000

10
00

20
00

30
00

(demand[p−25],demand[p])

p−25

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−27],demand[p])

p−27

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−30],demand[p])

p−30

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−32],demand[p])

p−32

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−33],demand[p])

p−33

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−35],demand[p])

p−35

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−38],demand[p])

p−38

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−40],demand[p])

p−40

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−41],demand[p])

p−41

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−43],demand[p])

p−43

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−46],demand[p])

p−46

p

1000 2000 3000

10
00

20
00

30
00

(demand[p−48],demand[p])

p−48

p

Figure 7.13: Current demand plotted against lagged demand for different lags for Zone 18.

144

Machine learning strategies for multi-step-ahead
time series forecasting

Zone 4

D
em

an
d

(G
W

)

0 2000 4000 6000 8000 10000 12000 14000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7.14: Hourly demand (GW) for Zone 4 with outliers.

Zone 10

D
em

an
d

(G
W

)

0 2000 4000 6000 8000 10000 12000 14000

20
40

60
80

10
0

12
0

14
0

Figure 7.15: Hourly demand (GW) for Zone 10 with a big jump in demand.

145

Machine learning strategies for multi-step-ahead
time series forecasting

9 4 6 8 10 7 3 1 5 11 2

Zone 18

Temperature site

R
M

S
E

0
10

00
0

30
00

0

9 7 3 5 11 10 4 6 1 8 2

Zone 3

Temperature site

R
M

S
E

0
50

00
15

00
0

9 7 3 5 11 10 6 4 1 8 2

Zone 6

Temperature site

R
M

S
E

0
50

00
15

00
0

5 3 1 9 4 8 7 6 10 11 2

Zone 12

Temperature site

R
M

S
E

0
10

00
0

30
00

0

5 3 9 1 4 8 7 6 10 11 2

Zone 11

Temperature site

R
M

S
E

0
50

00
15

00
0

25
00

0

9 11 6 10 4 8 3 7 5 2 1

Zone 20

Temperature site

R
M

S
E

0
40

00
80

00
12

00
0

10 6 8 1 4 9 7 3 5 11 2

Zone 19

Temperature site

R
M

S
E

0
50

00
10

00
0

15
00

0

6 10 4 8 1 7 9 3 11 2 5

Zone 15

Temperature site

R
M

S
E

0
20

00
60

00
10

00
0

4 8 6 1 10 3 9 5 7 11 2

Zone 17

Temperature site

R
M

S
E

0
10

00
30

00
50

00

1 4 8 3 9 5 6 10 7 11 2

Zone 10

Temperature site

R
M

S
E

0
50

00
10

00
0

15
00

0

Figure 7.16: Root mean square error (RMSE) over the testing week using real temperature (in blue) and
forecasted temperature (in red). The sites are ranked according to the RMSE when using
real temperature.

by keeping these 12 consecutive weeks of each year. For the out-of-sample week, for which we do
not have the average temperature for the week to be forecasted, we used the average temperature
of the previous week to perform the same calculations.

The above procedures was followed for all zones but zones 2, 7 and 9. Zones 3 and 7 contain
identical data, and Zone 2 contains values that are exactly 92.68% of the demand values in Zones 3
and 7. Consequently, we do not fit separate models for Zones 2 and 7, instead we use the forecasts
from Zone 3 to compute forecasts for Zones 2 and 7. And for Zone 9, we used the average of the
same hour for every day of the week over the entire data set to obtain forecasts for each period as
we didn’t find any temperature-related patterns.

146

Machine learning strategies for multi-step-ahead
time series forecasting

7.3.3 Model specification

One of the earliest electricity forecasting competitions was won by Ramanathan et al. (1997) using
a separate regression model for each hour of the day. This idea has subsequently been used by
Fay et al. (2003); Taylor (2003); McSharry, Bouwman, and Bloemhof (2005); Fan and Chen (2006)
and Fan and Hyndman (2012). In other words, the forecasts have been generated with the direct
strategy, which is expected to provide better forecasts than the recursive strategy because of the
strong nonlinearity of electricity load data and the large size of the data sets.

We follow the same approach and have a separate model for each hour of the day. However, to
generate the forecasts for the 7 days, we used the MSVR strategy described in Section 3.5.3. In
other words, these models are used recursively to produce the 168 required forecasts (24 hours
multiplied by 7 days). That is, we first produce the forecasts of the next day and then, use them as
inputs to make forecasts for the day after. We also added the observations from the previous hour
and the next hour in order to have more data. That is, when estimating the model for hour p, we
used data from hours p − 1, p and p+ 1.

We fit a model of this form for each hour of the day, for each zone, and for each of the nine weeks
to be forecast. We ended up with 24 × 17 × 9 = 36727 models to estimate with datasets having
approximately 1000 observations and 43 input variables. The main predictors of the models are
current and past temperatures (up to a week earlier) and past demand (up to a week earlier). In
addition, the models allow for the demand to change with time-of-year, day-of-week, time-of-day,
and on public holidays.

We use nonparametric additive models for forecasting electricity demand. These models are in the
regression framework but with some non-linear relationships. In particular, the proposed models
allow nonlinear and nonparametric terms using the framework of additive models (Hastie and
Tibshirani, 1990).

The demand in hour p on day t is modelled with

yt,p = cp(t) + fp(yt,p) + gp(zt,p) + εt , (7.3.1)

where

• yt,p denotes the demand on day t in hour p;
• cp(t) models all calendar effects (including time-of-year, day-of-week, holidays, etc.);
• fp(yt,p) models the effect of recent demand variables where yt,p is a vector of past demands,

prior to hour p on day t;
• gp(zt,p) models the temperature effects where zt,p is a vector of recent temperatures variables

at one of the temperature sites, prior to and including hour p on day t; and
• εt denotes the model error at time t.

We fit separate models of this form for each zone and all in-sample and out-of-sample weeks.

Calendar effects

The calendar effects term, cp(t), includes annual, weekly and daily seasonal patterns as well as
public holidays.

• The day-of-week effect was modelled with a factor variable, taking a different value for each
day of the week.

7There are only 17 zones to be modelled because of the relationship between Zones 2, 3 and 7, and because we use a
different approach for Zone 9.

147

Machine learning strategies for multi-step-ahead
time series forecasting

• The holiday effect was modelled with a factor variable, taking value zero on a non-work day8,
some non-zero value on the day before a non-work day and a different value on the day after
a non-work day.

• The time-of-year effect was estimated using a simple first-order Fourier approximation (one
sine and one cosine variables). A more complicated time-of-year effect was not necessary as
each model only included data within a 12 weeks period.

Temperature effects

Due to thermal inertia in buildings, it is important to consider lagged temperatures as well as
current temperatures in any demand forecasting model. The function gp(zt,p) models the effects of
recent temperatures on the aggregate demand where zt,p includes

• The current temperature and temperatures from the preceding 12 hours, and for the equiva-
lent hour on each of the previous two days;

• The minimum and maximum temperature in both the last 24 hours and the previous day;
• The average temperature for the previous day, the day preceding the previous day and the

last seven days.

Recall that when forecasting the eight in-sample weeks, the temperatures from the site which
gave the best forecasts (on the testing week) for each zone were used. When forecasting the
out-of-sample week, the demand forecasts obtained using the best three temperature sites were
averaged.

Lagged demand effects

We incorporate recent demand values into the model via the function fp(yt,p) where yt,p includes

• Lagged demand for each of the preceding 12 hours, and for the equivalent hour in each of the
previous two days. For example, when predicting demand at 4pm, we use lagged demand
from 4am to 3pm, as well as lagged demand at 4pm on the preceding two days.

• The minimum and maximum demand in the last 24 hours.
• The average demand for the last seven days.

By doing this, the serial correlations within the demand time series can be captured within the
model, and the variations of demand level throughout the time can be embedded into the model as
well.

Finally, we did not necessarily use all the previous predictors in each model, but these were all
candidate variables in our models. The process of estimating the model given in expression (7.3.1)
including the variable selection is described in the next section.

7.3.4 Model estimation

Notice that expression (7.3.1) can be rewritten as

yt,p = Fp(xt) + εt,p. (7.3.2)

where xt = [t,yt,p,zt,p] contains all potential predictors to be considered in the model.

Since, the forecasting accuracy for the competition was evaluated by weighted root mean square
error, as given in expression (7.2.1), we used squared errors to estimate the function Fp : Rd →R.

8We used the US federal holidays as listed in US Office of Personnel Management website: http://www.opm.gov/
Operating_Status_Schedules/fedhol/2008.asp

148

http://www.opm.gov/Operating_Status_Schedules/fedhol/2008.asp
http://www.opm.gov/Operating_Status_Schedules/fedhol/2008.asp

Machine learning strategies for multi-step-ahead
time series forecasting

We considered component-wise gradient boosting (see Section 2.2.4) with univariate P-splines (See
Section 2.2.1) to learn all the models of the form given in (7.3.2). By doing so, we take advantage of
the good performance and the automatic variable selection of the boosting algorithm. In addition,
P-splines allow us to have smooth estimation of the demand.

In our implementation, we used P-splines with 20 equally spaced knots and four degrees of freedom
for the weak learner terms. For the hyperparameters values, we set the value of ν to 0.15 and
the maximum number of components (or iterations) J to 500. Our implementation of the model
depended on the mboost package for R (Hothorn et al., 2010). We used the gamboost function
with the following values for the mboost_control parameters: nu=0.15 and mstop=500. For the
base learners, we used the bbs function for numerical variables and the bols function for factor
variables. Finally, we select the best number of stages J(J ∈ {1, . . . ,mstop}) using the cvrisk function
with 5-fold cross-validation.

7.3.5 Model analysis

In this section, we analyse and interpret the results of the proposed forecasting model to shed light
about its attractive features.

Figure 7.18 gives the root mean squared error (RMSE) obtained for the different zones on the testing
week. Zones that have higher errors are also zones with high average demand (see Figure 7.2). This
suggests that zones with high average demand will carry a higher weight in the final error.

Figure 7.19 gives the true hourly demand together with the fitted values for an increasing number
of boosting iterations. Recall that gradient boosting is a stagewise fitting procedure which depends
on an hyperparameters J (the number of boosting iterations), as shown in formula (2.2.14). We
can see that the first iterations significantly reduce the error of the model while the final iterations
are less and less contributing to the model. This confirms the theoretical analysis performed in
Bühlmann and Yu (2003) where the authors prove that the bias decreases exponentially fast and
the variance increases with exponentially diminishing terms as the number of boosting iteration J
increases.

One of the attractive features of the component-wise boosting algorithm is the automatic variable
selection induced by the procedure at each iteration. That is, among all the potential predictors
which are given in Table 7.1, few will be selected and contribute to each hourly model. See
Section 7.3.3 for a more detailed description of the different predictors.

Id Variable Id Variable Id Variable Id Variable
1 day of the week 12 demand[t-8] 23 temp.[t+h-2] 34 temp.[t+h-13]
2 holiday 13 demand[t-9] 24 temp.[t+h-3] 35 temp.[t+h-25]
3 time of year (sin) 14 demand[t-10] 25 temp.[t+h-4] 36 temp.[t+h-49]
4 time of year (cos) 15 demand[t-11] 26 temp.[t+h-5] 37 min. temp. (prev 1)
5 demand[t-1] 16 demand[t-12] 27 temp.[t+h-6] 38 min. temp. (prev 2)
6 demand[t-2] 17 demand[t+h-25] 28 temp.[t+h-7] 39 max. temp. (prev 1)
7 demand[t-3] 18 demand[t+h-49] 29 temp.[t+h-8] 40 max. temp. (prev 2)
8 demand[t-4] 19 min. demand (prev 1) 30 temp.[t+h-9] 41 avg. temp. (prev 1-7)
9 demand[t-5] 20 max. demand (prev 1) 31 temp.[t+h-10] 42 avg. temp. (prev 1)
10 demand[t-6] 21 avg. demand (prev 1-7) 32 temp.[t+h-11] 43 avg. temp. (prev 3)
11 demand[t-7] 22 temp.[t+h-1] 33 temp.[t+h-12] – –

Table 7.1: Description of all potential predictors. Forecasts are from demand[t-1] to demand[t+h-1]
where h ∈ {1, . . . ,24}.

149

Machine learning strategies for multi-step-ahead
time series forecasting

Note that the final solution of the boosting procedure, given in expression (2.2.14), can be rewritten
as

F̂p(xt) =
J∑
j=0

νl̂[j](xkj t) =
∑

k∈{1,...,d}

∑
{j:kj=k}

νl̂[j](xkj t)

︸ ︷︷ ︸
M̂(xkt)

=
∑

k∈{1,...,d}
M̂(xkt),

where M̂(xkj t) is the relative contribution of the variable k to the final model and d is the number
of initial predictors (the dimensionality of xt).

Let us define the model without the effect of predictor a as

F̂
(−a)
p (xt) =

∑
k∈{1,...,d}\{a}

M̂(xkt),

and the corresponding squared error as

E(−a) =
T∑
t=1

(yt,p −F
(−a)
p (xt))

2.

We then define the relative importance of a predictor a as

Ia =
E(−a) −E

E

where E is the squared error of the final model with all the selected variables. In other words, the
predictors which most increase the error after removing their relative effect are the most influential
variables given the other predictors.

Figure 7.20 shows the ten most influential variables (according to Ia) on the demand at different
hours of the day. We assign the importance value Ia∗ = 100 to the most influential variable and the
values of the others are scaled accordingly as in Friedman and Hastie (2000). To help visualization,
variables belonging to the same effect are plotted with the same color. That is, demand variables
are colored in green, temperature variables in blue and calendar variables in red.

We can see that variables from the different effects are selected: calendar effect (in red), temperature
effect (in blue) and lagged demand effect (in green). The importance of these different effects has
been shown in Section 7.3.1. We have seen the different calendar effects in Figures 7.7–7.11.
The clear dependence between demand and temperature was illustrated in Figure 7.12. Finally,
Figure 7.13 has shown that there is a clear dependence between the actual demand and previous
lagged demand variables.

For the first horizon (h = 1), we see that the most important variable is the current demand (variable
5). This is not surprising since the demand at hour p + 1 is highly dependent on the demand at
hour p. However, as one moves away from the starting point (i.e. h=2–3), other variables, such as
the demand at the equivalent hour for the previous day (variable 17), become important while the
current demand loses importance.

During working hours (10:00–19:00 or h=4–13), temperature variables (in blue) dominate demand
variables (in green). In fact, among the most important variables we find the current temperature
with some of the corresponding lagged temperatures (variables 22−−25). During that period of the
day, we can also see that the variable 17 is gaining importance with the horizon, with the highest
importance at 19:00.

150

Machine learning strategies for multi-step-ahead
time series forecasting

For the last hours of the day (20:00–24:00 or h=14–18), temperature variables become the most
influential variables. For 20:00 and 21:00, both variable 17 and 21 have a high importance while
for the remaining hours of the day, only variable 17 remains as a most influential variable.

For the first hours of the next day (1:00–05:00), temperature variables are gaining more importance
with a new variables appearing from 03:00 to 05:00, the average temperature of the previous day
(variable 42).

Finally, at 06 : 00, we see that variable 17 is again the most influential variable together with the
day of the week.

The analysis of Figure 7.20 has shown that the relative importance of the different variables and
effects is changing with the time of the day. This shows that the dependence between the demand
and the different considered variables is changing with the forecasting horizon, making electricity
load forecasting a challenging statistical problem.

For illustration purposes, Figure 7.21 gives the forecasts of the aggregate series (i.e. the sum of the
forecasts over all zones) for the eight in-sample weeks and the out-of-sample week.

7.4 Concluding remarks

Our entry ranked fifth out of 105 participating teams. This suggests that our modelling strategy
is competitive with the other models used to forecast the electricity demand. We have identified
several aspects that makes our modelling strategy successful.

First, as in any prediction task, data analysis allowed us to identify and clean the data from any
corrupted information for better model performance. The data analysis step was also important
for identifying useful variables to use in the model.

Second, we used different models including different effects for each hour of the day to model the
demand patterns which are changing throughout the day.

Third, each hourly model allowed nonlinear and nonparametric terms to be included in the final
model. This provided a great flexibility to the model and avoided making too many assumptions
about the data generating process.

Finally, gradient boosting has proven many times to be an effective prediction algorithm for
both classification and regression tasks. By selecting the number of components included in the
model, we can easily control the so-called bias-variance trade-off in the estimation. In addition,
component-wise gradient boosting increases the attractiveness of boosting by adding automatic
variable selection during the fitting process.

The Load forecasting track of the Global Energy Forecasting competition included challenging
prediction tasks which required solving several statistical problems such as data cleaning, variable
selection, regression and multi-step time series forecasting.

151

Machine learning strategies for multi-step-ahead
time series forecasting

Station : 1

Time

fo
re

ca
st

s

0 50 100 150

70
75

80
85

90
Station : 2

Time

fo
re

ca
st

s

0 50 100 150

60
65

70
75

80

Station : 3

Time

fo
re

ca
st

s

0 50 100 150

65
70

75
80

85

Station : 4

Time
fo

re
ca

st
s

0 50 100 150

70
75

80
85

90
Station : 5

Time

fo
re

ca
st

s

0 50 100 150

65
70

75
80

85

Station : 6

Time

fo
re

ca
st

s

0 50 100 150

70
75

80
85

Station : 7

Time

fo
re

ca
st

s

0 50 100 150

70
75

80
85

Station : 8

Time

fo
re

ca
st

s

0 50 100 150

70
75

80
85

90

Station : 9

Time

fo
re

ca
st

s

0 50 100 150

65
70

75
80

85

Station : 10

Time

fo
re

ca
st

s

0 50 100 150

65
70

75
80

85

Station : 11

Time

fo
re

ca
st

s

0 50 100 150

60
65

70
75

80
85

Figure 7.17: Forecasts of temperature for the eleven stations.

152

Machine learning strategies for multi-step-ahead
time series forecasting

Zone 4
Zone 8
Zone 5
Zone 13
Zone 17
Zone 1
Zone 14
Zone 16
Zone 15
Zone 19
Zone 2
Zone 6
Zone 20
Zone 3
Zone 7
Zone 10
Zone 11
Zone 12
Zone 18

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

0 2000 4000 6000 8000

WRMSE

Figure 7.18: Root mean squared error (RMSE) obtained for each zone on the testing week.

153

Machine learning strategies for multi-step-ahead
time series forecasting

12.0 12.2 12.4 12.6 12.8

12
.0

12
.2

12
.4

12
.6

12
.8

M=0

Hourly demand

F
itt

ed

● ●● ● ●● ●●● ● ●● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ● ●● ● ●● ●●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ●●● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ●●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ●●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ● ●● ●● ● ● ●●●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ● ● ●● ● ●● ● ●●● ●● ● ●● ● ●● ● ●● ●● ● ● ●● ● ●● ● ● ● ● ●●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ●●● ● ●●●●●●●● ●●● ● ●● ● ●●●●● ●●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ● ● ● ● ● ●● ●●● ● ●● ●●● ● ● ● ● ●

12.0 12.2 12.4 12.6 12.8

12
.0

12
.2

12
.4

12
.6

12
.8

M=1

Hourly demand

F
itt

ed

●
●

●
●

●

● ●●

● ●
●

● ●●
●

●
●●

● ●

● ● ●●
●

●
●

●
●

●
● ●

● ●●
● ●

●●
●

●

● ●●●
●

●

●
●

●

●
● ●

●
● ●

●
● ●

● ●
●●

●
●

●
●

●
●

●
●

●
●

●

● ●●●

●
●

●
● ●

●

● ●

●
●

●

●

● ●

●
●

●
●

●
●

●
● ●

●
●

●

●
●

●

●
● ●

●
● ●

●
●

●

● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

● ●●
● ●●● ●●

● ●
●

● ●
●

●
● ●●

●
●

●
●

●

●
● ●

●
●

●

● ●

●●
●

●

● ●
●

● ●●●
● ●
●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

● ● ●
● ●●●

●●●
●

●

●
● ●
●

●
●

●
●

●

●

●

●

● ●●

●
● ●

●

●
●

●

●
●

● ●
●

●
●

●
● ●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●●
● ●

●

● ●

●
● ●

●
●

●

●
● ●

●
● ●

● ●●

●
●

●

●
●

●
●

●
●

●
● ●

● ●
●

●
●

●
●

●
●

●
● ●

● ● ●

●
● ●●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

● ●
●

● ●
●●

●
●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●

●
●

●

●
● ●

●
●

●

●

●

●
●

●
●

●

● ●

● ● ●
●

● ●
● ●

●
● ● ●

●
●

●●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

● ●

●●● ●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

● ● ●

● ●
●

●
●

●

● ●● ●
●

●●

●
●

●

●
●

●
●

●
●

●
●

●
● ●

●
●

●

● ●●
●

●
●

● ●
●

● ●
● ●

●
●

●
● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

● ● ●● ● ●● ●
●

● ●
●

●
●

●

●

● ●

●
●

●

●
●

●
●

●

●

● ● ●
●

●
●

●
●

●

● ●●●
● ●

●
● ●●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

● ●

●

●
●

●●
●

●
●

●
●

●

●
●

●
●
●

●
●

●
●

●

●

●
● ●

● ● ●●
●

●

● ●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

● ●
●

●
● ●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

● ●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●
●

●

●
● ●

●●●

●●●● ●●●
● ●
● ● ●

●●●●
●●

●
●

●

● ● ● ●

●
●●

●
●

●
●

●

● ●
●

●
●

●

● ● ●
●

● ●
● ● ●● ●

●
●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

● ● ●

● ● ●
●

●
● ●

●
●

● ●
●●

● ●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
● ●●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●

●

●
● ●

●
● ●

● ● ● ●
●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●
●

●
●

●
●

●

●
● ●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

● ●
●

●
●

●

● ●●
● ● ●

● ●●● ● ● ●
●

●
●

●
●

●
● ●

●
●

●

● ●
●

●
●

●

● ●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●●
● ●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
● ●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

12.0 12.2 12.4 12.6 12.8

12
.0

12
.2

12
.4

12
.6

12
.8

M=2

Hourly demand

F
itt

ed ●

●

●

●
●

● ●●

●
●

●

●
●●

●

●

●●

● ●

● ● ●●

●

●

●

●
●

●

● ●

●
●●

●
●

●●

●

●

● ●●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●
●

● ●●●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ●
●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

● ●●
● ●●● ●●

● ●
●

● ●

●

●

●
●

●

●
●

●

●
●

●

● ●

●

●
●

●
●

●●
●

●

● ●

●

●
●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●●●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●

● ●

●

●
●

●
● ●

●

●
●

● ●●

●

●
●

●

●

●
●

●
●

●
● ●

●
●

●

●

●
●

●

●

●

●

● ●

● ● ●

●

● ●
●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●

● ●

●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

● ●●
●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ● ●● ●
●

● ●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

● ●●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

● ● ●●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●
●●

●●●●
●●
●

●
●

●
● ●

●●●●
●

●

●

●

●

● ●
●

●

●
●●

●

●

●

●

●

● ●

●

●

●
●

● ● ●

●

● ●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

● ●●
●

● ●

● ●●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

12.0 12.2 12.4 12.6 12.8

12
.0

12
.2

12
.4

12
.6

12
.8

M=5

Hourly demand

F
itt

ed ●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●●● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●
●●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

12.0 12.2 12.4 12.6 12.8

12
.0

12
.2

12
.4

12
.6

12
.8

M=10

Hourly demand

F
itt

ed

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

12.0 12.2 12.4 12.6 12.8

12
.0

12
.2

12
.4

12
.6

12
.8

M=50

Hourly demand

F
itt

ed

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

12.0 12.2 12.4 12.6 12.8

12
.0

12
.2

12
.4

12
.6

12
.8

M=100

Hourly demand

F
itt

ed

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

12.0 12.2 12.4 12.6 12.8

12
.0

12
.2

12
.4

12
.6

12
.8

M=200

Hourly demand

F
itt

ed

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

12.0 12.2 12.4 12.6 12.8

12
.0

12
.2

12
.4

12
.6

12
.8

M=500

Hourly demand

F
itt

ed

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7.19: M = 500 boosting iterations is the best in terms of cross-validation.

154

Machine learning strategies for multi-step-ahead
time series forecasting

5 11 1 17 14 22 13 7 6 2

h=1 : From 6:00 to 7:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

5 17 22 1 13 10 38 6 2 23

h=2 : From 6:00 to 8:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

17 22 5 38 13 23 1 10 24 21

h=3 : From 6:00 to 9:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

23 17 22 6 21 19 18 41 38 1

h=4 : From 6:00 to 10:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

23 22 17 21 1 6 19 41 35 24

h=5 : From 6:00 to 11:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80
23 22 21 17 1 41 35 19 24 6

h=6 : From 6:00 to 12:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

23 22 21 24 41 1 17 20 35 19

h=7 : From 6:00 to 13:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

23 22 21 24 20 35 17 41 1 42

h=8 : From 6:00 to 14:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

23 22 24 21 35 17 41 20 1 42

h=9 : From 6:00 to 15:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80
23 24 22 17 21 35 1 41 25 39

h=10 : From 6:00 to 16:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

24 23 25 22 17 21 1 35 41 5

h=11 : From 6:00 to 17:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

25 23 24 17 26 5 22 21 1 41

h=12 : From 6:00 to 18:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

25 23 17 21 22 41 5 1 24 40

h=13 : From 6:00 to 19:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

21 17 22 39 24 41 1 25 40 26

h=14 : From 6:00 to 20:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

17 21 24 22 41 1 40 26 39 25

h=15 : From 6:00 to 21:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

17 25 24 40 21 28 35 18 1 22

h=16 : From 6:00 to 22:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

17 25 18 40 35 29 24 22 43 1

h=17 : From 6:00 to 23:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

17 18 25 26 40 35 22 43 30 12

h=18 : From 6:00 to 24:00

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

11 26 18 22 40 30 35 43 27 21

h=19 : From 6:00 to 1:00 (next day)

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

27 22 26 18 12 21 40 11 35 31

h=20 : From 6:00 to 2:00 (next day)

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

42 27 21 22 41 35 40 18 32 24

h=21 : From 6:00 to 3:00 (next day)

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

42 21 22 41 35 25 18 15 40 24

h=22 : From 6:00 to 4:00 (next day)

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

42 5 22 21 1 35 41 11 24 14

h=23 : From 6:00 to 5:00 (next day)

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

17 1 11 42 22 21 35 15 2 41

h=24 : From 6:00 to 6:00 (next day)

Input variable

R
el

at
iv

e
im

po
rt

an
ce

0
20

40
60

80

Figure 7.20: Relative importance of the five first variables on the demand for different times of the day.
Demand variables are colored in green, temperature variables in blue and calendar variables
in red.

155

Machine learning strategies for multi-step-ahead
time series forecasting

Zone : 21 − Week : 1

Time

fo
re

ca
st

s

0 50 100 150

12
00

00
0

18
00

00
0

24
00

00
0 Zone : 21 − Week : 2

Time

fo
re

ca
st

s

0 50 100 15010
00

00
0

14
00

00
0

18
00

00
0

Zone : 21 − Week : 3

Time

fo
re

ca
st

s

0 50 100 15010
00

00
0

16
00

00
0

22
00

00
0 Zone : 21 − Week : 4

Time

fo
re

ca
st

s

0 50 100 150

14
00

00
0

18
00

00
0

Zone : 21 − Week : 5

Time

fo
re

ca
st

s

0 50 100 15012
00

00
0

18
00

00
0

24
00

00
0

Zone : 21 − Week : 6

Time

fo
re

ca
st

s

0 50 100 15010
00

00
0

16
00

00
0

22
00

00
0

Zone : 21 − Week : 7

Time

fo
re

ca
st

s

0 50 100 150

15
00

00
0

25
00

00
0

Zone : 21 − Week : 8

Time

fo
re

ca
st

s

0 50 100 150

14
00

00
0

17
00

00
0

20
00

00
0

Zone : 21 − Week : 9

Time

fo
re

ca
st

s

0 50 100 15012
00

00
0

18
00

00
0

Figure 7.21: Forecasts for zone 21 for the eight in-sample weeks and the out-of-sample week.

156

Chapter 8

Conclusions and directions for future

works

With the massive amount of data collected every day, learning from data has become a key tool
for knowledge discovery, and as a result, machine learning is a growing field of interest in many
fields of science (Abu-Mostafa, 2012). However, machine learning algorithms and methodologies
have received little attention in the econometrics and forecasting literature, especially the multi-
step-ahead forecasting problem. This thesis has contributed to the study and development of
multi-step-ahead forecasting strategies based on algorithms and methodologies from machine
learning.

Forecasting several future observations of a given univariate time series can be either applied
recursively by iterating a one-step-ahead model forward for the desired number of steps, or directly
using a specific model for each forecast horizon. A number of studies have focused on comparing
these two strategies and investigating under which conditions one strategy is better than the other.

However, these studies have appeared in different fields, and the lack of communication between
these fields has prevented a broad overview of the different developments in this area. To fill
this gap, Chapter 3 provided an overview of the literature for both linear and nonlinear models,
including some works involving machine learning models.

With linear models, the theoretical literature tends to conclude that model misspecification plays an
important role in the relative performance between the recursive and direct strategies (Chevillon,
2007). In particular, when the model is correctly specified, recursive forecasts benefit from
more efficient parameter estimation, but if the model is misspecified, direct forecasts are more
robust. However, empirical studies often found superior performance of recursive linear forecasts
compared to direct linear forecasts, especially for long horizons (Marcellino, Stock, and Watson,
2006; Pesaran, Pick, and Timmermann, 2011).

With nonlinear models, recursive forecasts are known to be asymptotically biased since they do
not consider the innovation terms (Brown and Mariano, 1984; Lin and Granger, 1994). The direct
strategy is often preferred over the recursive strategy since it avoids the accumulation of errors. In
particular, empirical studies often found superior performance of the direct strategy compared to
the recursive strategy (Atiya et al., 1999; Kline, 2004; Sorjamaa, Hao, Reyhani, et al., 2007).

When comparing linear with nonlinear models, it has been found that nonlinear models have often
larger forecast errors than linear models, especially with economic time series. Arguments put
forward include the weak nonlinearity of the time series, the rare occurrence of nonlinear features
and the overfitting with short time series (Stock and Watson, 1999; Teräsvirta, 2006; Teräsvirta,
Tjostheim, and Granger, 2010).

157

Machine learning strategies for multi-step-ahead
time series forecasting

The review performed in Chapter 3 has pointed out a number of limitations of the current studies
that compare recursive forecasts with direct forecasts. It was found that the majority of studies
have focused on forecasts generated with linear models. In particular, less work has been done with
nonlinear models, even less with machine learning models. Also, among the few in-depth studies
that have considered machine learning algorithms, many have either focused on the neural network
model or have been limited to one-step-ahead forecasting (Berardi and Zhang, 2003; Ahmed et al.,
2010).

We have addressed these different issues in Chapter 4 where we performed an in-depth bias
and variance study to compare recursive and direct forecasts using different machine learning
algorithms for both linear and nonlinear DGPs. Our study has also investigated the role of the time
series length and the forecast horizon in the performance of the recursive and direct strategies.

Overall, the results have shown that the accuracy of the recursive and direct forecasts depend on
different factors, including the learning algorithm, the DGP, the time series length and the forecast
horizon. This has emphasized the difficulty of choosing between recursive and direct forecasts in
real-world applications.

Among the main results, we have found that recursive linear forecasts have good performance in
many different scenarios, even when the DGP is nonlinear, notably due to its reduced variance,
especially for short time series and long horizons. These results have also emphasized the fact that
weakly nonlinear time series and/or short time series will favor linear forecasts over nonlinear
forecasts, notably due to the overfitting problem (Teräsvirta, 2006).

Our results have also indicated that machine learning models provide better performance with
direct forecasts and long time series. However, direct forecasts suffer from a large variance at long
horizons with short time series. Better performance has been found with machine learning models
that have the ability to switch to the linear model, such as neural networks.

Motivated by the results of the bias and variance analysis of Chapter 4, we proposed new forecasting
strategies in Chapters 5 and 6 to overcome some of the current limitations. All the proposed
strategies have been evaluated with both simulated time series as well as with real-world time
series from the M3 and NN5 forecasting competitions.

In Chapter 5, we introduced multi-stage forecasting strategies to address the difficult task of
choosing between recursive and direct forecasts. Rather than treating recursive and direct strategies
as competitors, multi-stage strategies combine the best properties of both strategies.

The main idea is to produce multi-step recursive linear forecasts, and then adjust these forecasts
using direct nonlinear models, which model the multi-step linear forecast errors at each horizon.
By doing so, the multi-stage strategies allow nonlinearity and interactions between lagged variables
at each forecast horizon, and can benefit from the reduced variance of recursive linear forecasts,
provided the direct rectification models do not increase the variance too much. We proposed a first
multi-horizon strategy, called the rectify strategy, where the rectification models are estimated
using nearest neighbors.

Because recursive linear forecasts often need few adjustments at each horizon with real-world time
series, we considered a second strategy, called the boost strategy, that estimates the rectification
models using gradient boosting algorithms that involve the so-called weak learners. The boost
strategy is particularly useful since boosting algorithms have received little attention in the
forecasting literature, and it provides a procedure for applying boosting algorithms to multi-step
forecasting problems. When comparing the rectify and boost strategies, we found that the boost
strategy outperforms the rectify strategy, notably due to the resistance to overfitting of the gradient
boosting algorithms.

158

Machine learning strategies for multi-step-ahead
time series forecasting

Compared to the recursive and direct strategies, the boost strategy provides either close or better
performance than the best between recursive and direct strategies. In particular, we have observed
a large decrease in errors especially for short horizons with the boost strategy compared to the
recursive and direct forecasts. This has shown the advantage of modeling part of the signal with
the linear model which allows simpler direct rectification models compared to the models of the
direct strategy.

The results that we obtained with real-world time series suggested that the performance of the
boost strategy is either better or closely related to the performance of the recursive linear forecasts.
In other words, provided that the recursive linear forecasts provide a first good approximations,
the boost strategy will improve the forecasts. Similar results have been observed with the rectify
strategy.

Overall, multi-stage strategies are good alternatives to the recursive or direct strategy since they
avoid the problem of choosing between one of these two strategies, and at the same time, often
provide comparable or better forecasts than the recursive and direct strategies with both linear and
nonlinear models. In particular, the boost strategy can benefit from the resistance to overfitting of
the gradient boosting algorithms.

In Chapter 6, we have investigated whether we can improve direct forecasts generated by machine
learning models that have been selected independently at each horizon, which typically suffer from
a high variance especially with short time series at long horizons.

We proposed the multi-horizon forecasting strategies that exploit the information contained in other
horizons when learning the model for each horizon. In particular, we proposed to select the lag
order and the hyperparameters of each model by minimizing forecast errors over multiple horizons
rather than just the horizon of interest, but we still allow the parameters to be independently
selected for each horizon.

Depending on which horizons are considered for each model, a different multi-horizon strategy
is defined and different lag order and hyperparameters will be selected. We have considered the
extreme case where all the horizons are used for each model, which is the opposite of the case
where the models are independently selected. We also considered an intermediate configuration
where only nearby horizons are used for each model. The two strategies were implemented with
both nearest neighbors and neural networks.

We have found that the multi-horizon strategies are very effective in reducing the forecast variance
compared to the single-horizon strategies where each model is selected independently at each
horizon. The largest decrease in variance has been observed with the strategy that constrains all
the models to use the same lag order and hyperparameters. However, this strategy suffers from a
larger bias at short horizons which can increase the forecast errors when the bias becomes more
important than the variance. We did not observe a larger bias at short horizons with the strategy
that only consider local horizons, and the variance was still lower for long horizons compared to
selecting each model independently. However, the decrease in variance is lower compared to the
strategy that considers all horizons for each model.

Finally, the advantage of multi-horizon strategies has been more noticeable with linear or weakly
nonlinear DGPs. Also, we observed a better performance of multi-horizon strategies with neural
networks compared to nearest neighbors.

In summary, the results have suggested that the multi-horizon strategies will provide better
forecasts when the conditional mean does not change too much with the horizon, the machine
learning model is highly flexible and the time series is short.

159

Machine learning strategies for multi-step-ahead
time series forecasting

Last but not least, a key contribution of this thesis has been the participation in the Load Forecast-
ing track of the Kaggle Global Energy Forecasting Competition 2012, an international forecasting
competition that involved a hierarchical load forecasting problem for a US utility with twenty
geographical zones. The data available consisted of the hourly loads for the twenty zones and
hourly temperatures from eleven weather stations, for four and a half years. For each zone, the
hourly electricity loads for nine different weeks needed to be predicted without having the lo-
cations of either the zones or stations. We used separate models for each hourly period, with
component-wise gradient boosting for estimating each model using univariate P-splines as base
learners. The models allow for the electricity demand changing with the time-of-year, day-of-week,
time-of-day, and on public holidays, with the main predictors being current and past temperatures,
and past demand.

Our entry ranked fifth out of 105 participating teams, and is described and analyzed in Chapter 7.
The good ranking of our approach suggests that our modelling strategy is competitive with the
other models used to forecast the electricity demand. We have identified several aspects that makes
our modelling strategy successful.

First, data analysis is a key step that allows to identify useful variables to consider in the model.
The data analysis step was also important for identifying and cleaning the data from any corrupted
information for better model performance.

Second, we used different models including different effects for each hour of the day to model the
demand patterns which are changing throughout the day.

Third, each hourly model allowed nonlinear and nonparametric terms to be included in the final
model. This provided a great flexibility to the model and avoided making too many assumptions
about the data generating process.

Finally, gradient boosting has proven many times to be an effective prediction algorithm for
both classification and regression tasks. By selecting the number of components included in the
model, we can easily control the so-called bias-variance trade-off in the estimation. In addition,
component-wise gradient boosting increases the attractiveness of boosting by adding automatic
variable selection during the fitting process.

The Kaggle load forecasting competition was a challenging prediction task which required solving
several statistical problems such as data cleaning, variable selection, regression and multi-step
time series forecasting.

The main message of this thesis can be summarized as follows: algorithms and methodologies
from machine learning have been neglected in the forecasting literature, especially for the multi-
step-ahead forecasting problem. However, we have shown that the performance of multi-step-
ahead forecasts generated with machine learning algorithms can be significantly improved if
an appropriate strategy is used to generate the forecasts and to select the lag order and the
hyperparameters of the models. Our findings and experiences raised several interesting questions
that invite future research at the intersection of time series forecasting and machine learning, as
summarized in the following section.

8.1 Limitations and future work

This thesis is a first step towards a larger research agenda that aims at developing new machine
learning algorithms for time series forecasting. In this section, we describe some limitations of our
work and provide potential directions for future research.

160

Machine learning strategies for multi-step-ahead
time series forecasting

We have exclusively focused on univariate time series while in practice we often encounter multi-
variate forecasting problems where we are required to forecast a set of possibly dependent time
series. Although a multivariate forecasting problem can be reduced to a set of independent uni-
variate forecasting problems, taking into account the interdependence between the time series may
improve the forecast accuracy. An important future direction is to extend the strategies developed
in this thesis to the multivariate setting.

Although many machine learning algorithms have been successful in applications such as in
Bioinformatics, where the data is typically high-dimensional (Larrañaga et al., 2006), there is
a fundamental difference between multivariate time series and the type of data that have been
considered in the machine learning literature (Caruana, Karampatziakis, and Yessenalina, 2008).
In fact, multivariate time series are typically highly inter-related and correlated over time (Stock
and Watson, 2006). Therefore, the development of new machine learning algorithms that can deal
with high-dimensional multivariate time series is a key future challenge.

We have considered several machine learning models in this work, including neural networks,
nearest neighbors and gradient boosting. However, a number of other models have been proposed
in the machine learning literature (e.g. support vector machines and random forests) (Hastie,
Tibshirani, and Friedman, 2009), and it would be interesting to investigate their performance on
forecasting problems. Furthermore, except for neural networks, machine learning algorithms have
rarely been compared with nonlinear time series models such as threshold and smooth transition
autoregressive models (Teräsvirta, Tjostheim, and Granger, 2010). A comparison between these
different types of models could lead to important insights about their differences.

Although real-world time series are expected to behave nonlinearly (Kantz and Schreiber, 2004), we
have found that nonlinear forecasts are more prone to overfitting compared to linear forecasts, es-
pecially with short time series, as confirmed by Teräsvirta (2006). In consequence, the development
of new nonlinear forecasting methods should focus on how to reduce the overfitting phenomenon,
and a deeper investigation of the role and benefits of nonlinear models for real-world time series
forecasting would be very useful.

In particular, the combination of forecasts generated by different machine learning models has been
proven to be very effective against overfitting (Andrawis, Atiya, and El-Shishiny, 2011). Therefore,
a deeper investigation of the benefits of the so-called ensemble methods (Dietterich, 2000) for
multi-step forecasting would be very useful. For example, bagging has received little attention in
the context of time series forecasting (Inoue and Kilian, 2008; Adeodato et al., 2009). One reason is
the difficulty of generating bootstrap replicates for time series data (Kreiss and Paparoditis, 2011),
which in itself can be an important future contribution.

Cross-validation is the most popular method to select the hyperparameters of machine learning
models. However, cross-validation (as usually applied) is known to be inappropriate with time
series data due to the time dependence between observations (Opsomer, Wang, and Yang, 2001).
Except for some works in kernel regression (Brabanter and Brabanter, 2011) and some experimental
comparisons of cross-validation methods (Bergmeir and Benítez, 2012), there has been little work
that has extended cross-validation methods for multi-step time series forcasting. We believe the
study of cross-validation methods for time series data is an important area of future research. In
particular, an in-depth study of cross-validation methods for time series forecasting is still missing.

The VC theory that we briefly discussed in Section 2.1.3 is a non-asymptotic theory (Boucheron,
Lugosi, and Massart, 2013) that has been very useful in studying learning algorithms. However,
the VC theory has been initially developed for independent and identically distributed data. There
have been some recent research works on the learning theory for autoregressive models (Mcdonald,
Shalizi, and Schervish, 2011) and on model selection for time series forecasting (Alquier and

161

Machine learning strategies for multi-step-ahead
time series forecasting

Wintenberger, 2012). We believe the extension of the learning theory for time series data is a
promising future direction.

Although we have performed an in-depth bias and variance study in Chapter 4 and we have con-
sidered real-world time series from both the M3 and NN5 competitions in Chapter 5, a large-scale
comparison between recursive and direct forecasts for time series with very different characteristics
(e.g. the 10,000 time series from the M4 competition1) seems not yet to be available. Such com-
parison would be very useful for better understanding the differences between the two strategies.
Also, as far as the selection of recursive and direct forecasts is concerned, a meta-learning approach
(Lemke and Gabrys, 2010; Smith-Miles, 2008) has not yet been proposed. This approach can be
very useful for selecting between the two strategies in real-world applications (Wang, Smith-Miles,
and Hyndman, 2009).

For the rectify strategy that we proposed in Chapter 5, an important future work is a deeper
exploration of the different degrees of freedom of the strategy. For example, it would be interesting
to investigate the impact of a weaker base model than the best AR model as well as alternative weak
learners for the rectification models. Furthermore, a study on the effect of the number of boosting
iterations on the bias and variance components would be very useful to deeply understand the
strategy. Finally, more investigation on the benefit of boosting algorithms for time series forecasting,
especially for multivariate time series, is an important future direction (Bai and Ng, 2009; Buchen
and Wohlrabe, 2011).

For the multi-horizon strategies we developed in Chapter 6, a natural extension is to automatically
select the horizons to consider in the objective of each model. Also, we can consider alternative
forms of regularization, for example by imposing to all the hyperparameters to be close to the
average value of the hyperparameters for all or a subset of the horizons (Evgeniou and Pontil, 2004).
Finally, although methods such as PLS had little success with univariate time series (Franses and
Legerstee, 2009), these methods may provide better results with multivariate time series.

We have mainly considered the mean squared error (MSE) as a forecast accuracy measure, and as a
result, multi-step forecasting reduced to estimation of the conditional mean at each forecast horizon.
Although using MSE allowed us to decompose the errors into bias and variance components, it is
important to note that MSE is not always an appropriate forecast accuracy measure (Hyndman and
Koehler, 2006). Furthermore, Gneiting (2011) pointed out the importance of matching the fitting
criteria with the forecast accuracy measure. It would be interesting to investigate the impact of
using different fitting criteria and forecast accuracy measures in real-world forecasting tasks.

Because we have only estimated the conditional mean, the forecasts we have generated are called
point forecasts. One weakness of point forecasts is that they provide no description of the uncertainty
associated to the forecasts. A better alternative is the density forecasts which provide a complete
description of the associated uncertainty (Tay and Wallis, 2000; Corradi and Swanson, 2006).
Intermediate forecasts between these two forecasts are called prediction intervals (Chatfield, 2000),
and an interval within which the true future values will fall with specified probability. Except
for neural networks (Khosravi et al., 2011a; Khosravi et al., 2011b), generating interval or density
forecasts with machine learning models has received little attention and is a key challenge for
future works (Shrestha and Solomatine, 2006). We refer to Gneiting and Katzfuss (2014) for a
recent overview of probabilistic forecasting.

We are entering the era of Big data where massive amounts of data are continuously produced
and stored every day. Big data not only brings opportunities but also many computational and
statistical challenges (Hand, 2013; Fan, Han, and Liu, 2014). In the time series forecasting context,
Big data is expected to play an important role in dealing with a large amount of time series rather

1http://m4competition.com/

162

http://m4competition.com/

Machine learning strategies for multi-step-ahead
time series forecasting

than “Bigger” time series. In fact, a large number of time series that are inter-related and correlated
over time are collected in many fields of science, and making sense of all these time series is a
key future challenge. In fact, in the forecasting literature, many studies have considered a limited
number of time series, but nowadays millions of time series are available.

Forecasting is of course one important application with all these time series, especially the devel-
opment of large-scale forecasting models that can handle a large number of time series (Agarwal
et al., 2010). Another important application is the study of the dependence between a set of time
series over time in order to find key variables that govern certain phenomenon (Liu et al., 2010).

The problem of hierarchical forecasting is one example that can greatly benefit from large-scale
forecasting models. Time series can often be represented in a hierarchical structure, which includes
a bottom level, several intermediate levels and a top level (Fliedner, 2001). In contrast to the
conventional forecasting framework, hierarchical forecasting requires an additional constraint:
that the sum of the forecast at one level must be equal to the forecast at the superior level across
the whole hierarchy.

Forecasting hierarchical time series is considered a very challenging problem in the forecasting
literature (Hyndman, Ahmed, et al., 2011). The various time series of the hierarchy can interact in
varying and complex ways. The complex dependencies between the time series can make a change
in one series at one level have an important impact on other series at the same level as well as
series at higher and lower levels. Furthermore, time series at different levels of the hierarchy can
be of very different type. For example, time series at the bottom level are typically very noisy while
series at higher levels are much smoother. Finally, in practice the hierarchy can be very large with
millions of time series; e.g., time series representing a quantity for a whole country disaggregated
by states, cities and homes.

Large-scale forecasting models will be useful in many applications including energy and business
applications (Hong, 2014; Varian, 2014). For example, as a result of the modernization process
of the electrical grid (also called the smart grid), utilities are facing a “data deluge” with all the
communication devices such as “smart meters”, which record and transmit electric consumption
information at 15 minute or hourly intervals (Depuru, Wang, and Devabhaktuni, 2011). In fact,
although the smart grid offers great potential for a more reliable grid, it also brings new challenges
such as demand-response forecasting (Balijepalli et al., 2011) and renewable energies integration,
such as wind and solar energies (Yin et al., 2013; Pinson, 2013).

Finally, when we talk about time series, we often think about a sequence of numbers. However,
time series can include a large variety of data types (Lam, 2014), such as a set of evolving images
(Verbesselt et al., 2010), texts (Blei and Lafferty, 2006) or networks (Kim and Leskovec, 2013).
An important future challenge is to develop methods that can handle different types of data
(Wasserman, 2014), and we may benefit from all the methods that have already been developed for
traditional time series.

The recent book “Past, Present, and Future of Statistical Science” (Lin, Genest, et al., 2014) is
an excellent reference for future work not only for time series forecasting but for statistics and
machine learning in general.

163

Bibliography

Abu-Mostafa, YS (June 2012). Machines that Think for Themselves. Scientific American 307(1),
78–81.

Abu-Mostafa, YS, M Magdon-Ismail, and HT Lin (2012). Learning From Data. AMLBook.
Adeodato, PJ, AL Arnaud, GC Vasconcelos, RC Cunha, and DS Monteiro (August 2009). MLP

ensembles improve long term prediction accuracy over single networks. International Journal of
Forecasting 27(3), 1–11.

Agarwal, D, D Chen, Lj Lin, J Shanmugasundaram, and E Vee (2010). Forecasting high-dimensional
data. In: Proceedings of the 2010 international conference on Management of data - SIGMOD10.
New York, USA: ACM Press, pp.1003–1012.

Ahmed, N, AF Atiya, NE Gayar, and H El-Shishiny (September 2010). An Empirical Comparison of
Machine Learning Models for Time Series Forecasting. Econometric Reviews 29(5), 594–621.

Akaike, H (1969). Fitting autoregressive models for prediction. Annals of the institute of statistical
mathematics 21(1), 243–247.

Allen, D (1974). The Relationship Between Variable Selection and Data Augmentation and a
Method for Prediction. Technometrics 16(1), 125–127.

Alquier, P and O Wintenberger (August 2012). Model selection for weakly dependent time series
forecasting. Bernoulli 18(3), 883–913.

Altman, N (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The
American Statistician 46(3), 175–185.

Andrawis, R, A Atiya, and H El-Shishiny (2011). Forecast combinations of computational intelli-
gence and linear models for the NN5 time series forecasting competition. International Journal
of Forecasting 27(3), 1–29.

Arlot, S and A Celisse (2010). A survey of cross-validation procedures for model selection. Statistics
Surveys 4, 40–79.

Assaad, M, R Boné, and H Cardot (January 2008). A new boosting algorithm for improved time-
series forecasting with recurrent neural networks. Information Fusion 9(1), 41–55.

Athanasopoulos, G and R Hyndman (September 2011). The tourism forecasting competition.
International Journal of Forecasting 27(3), 822–844.

Atiya, AF, SM El-shoura, SI Shaheen, and MS El-sherif (1999). A comparison between neural-
network forecasting techniques–case study: river flow forecasting. IEEE Transactions on Neural
Networks 10(2), 402–409.

Atkeson, C, A Moore, and S Schaal (1997). Locally weighted learning. Artificial intelligence review
11(1), 11–73.

Audrino, F and P Bühlmann (June 2009). Splines for financial volatility. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 71(3), 655–670.

Bai, J and S Ng (2009). Boosting diffusion indices. Journal of Applied Econometrics 24(4), 607–629.
Balijepalli, V, V Pradhan, SA Khaparde, and RM Shereef (2011). Review of demand response under

smart grid paradigm. In: Innovative Smart Grid Technologies - India (ISGT India), 2011 IEEE PES,
pp.236–243.

164

Machine learning strategies for multi-step-ahead
time series forecasting

Baltagi, B (2001). A companion to theoretical econometrics. Ed. by BH Baltagi. Blackwell companions
to contemporary economics [1]. Oxford [u.a.]: Blackwell.

Barber, D, AT Cemgil, and S Chiappa (2011). Bayesian Time Series Models. Bayesian Time Series
Models. Cambridge University Press.

Bellman, R and RE Bellman (1961). Adaptive Control Processes: A Guided Tour. ’Rand Corporation.
Research studies. Princeton University Press.

Ben Taieb, S and AF Atiya (2014). “A bias and variance analysis for multi-step time series fore-
casting.” Submitted to IEEE Transactions on Neural Networks and Learning Systems (under
revision).

Ben Taieb, S and G Bontempi (December 2011). Recursive Multi-step Time Series Forecasting
by Perturbing Data. In: Proceedings of the 11th IEEE International Conference on Data Mining
(ICDM). IEEE, pp.695–704.

Ben Taieb, S, G Bontempi, A Atiya, and A Sorjamaa (2012). A review and comparison of strategies
for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert
Systems with Applications 39(8), 7067–7083.

Ben Taieb, S, G Bontempi, A Sorjamaa, and A Lendasse (2009). Long-Term Prediction of Time
Series by combining Direct and MIMO Strategies. In: Proceedings of the 2009 IEEE International
Joint Conference on Neural Networks (IJCNN). Atlanta, U.S.A., pp.3054–3061.

Ben Taieb, S and RJ Hyndman (August 2013). A gradient boosting approach to the Kaggle load
forecasting competition. International Journal of Forecasting, 1–19.

Ben Taieb, S and RJ Hyndman (2014a). Boosting multi-step autoregressive forecasts. In: Proceedings
of the 31th International Conference on Machine Learning (ICML), pp.109–117.

Ben Taieb, S and RJ Hyndman (2014b). “Recursive and direct multi-step forecasting: the best of
both worlds.” Submitted to International Journal of Forecasting (under revision).

Ben Taieb, S, A Sorjamaa, and G Bontempi (2010). Multiple-output modeling for multi-step-ahead
time series forecasting. Neurocomputing 73(10-12), 1950–1957.

Berardi, VL and GP Zhang (January 2003). An empirical investigation of bias and variance in
time series forecasting: modeling considerations and error evaluation. Neural Networks, IEEE
Transactions on 14(3), 668–79.

Bergmeir, C and JM Benítez (May 2012). On the use of cross-validation for time series predictor
evaluation. Information Sciences 191, 192–213.

Bhansali, RJ (1999). Parameter estimation and model selection for multistep prediction of time
series : a review. In: Asymptotics, Nonparametrics and Time Series. Ed. by S. Gosh. New York:
Marcel Dekker.

Bhansali, RJ (2002). Multi-Step Forecasting. A Companion to Economic Forecasting (1), 206–221.
Bhansali, R (1996). Asymptotically efficient autoregressive model selection for multistep prediction.

Annals of the Institute of Statistical Mathematics 48(3), 577–602.
Bhansali, R (1997). Direct autoregressive predictors for multistep prediction: Order selection and

performance relative to the plug in predictors. Statistica Sinica 7, 425–449.
Bhansali, R and P Kokoszka (April 2002). Computation of the forecast coefficients for multistep

prediction of long-range dependent time series. International Journal of Forecasting 18(2), 181–
206.

Blei, DM and JD Lafferty (2006). Dynamic topic models. In: Proceedings of the 23rd international
conference on Machine learning (ICML 2006), pp.113–120. arXiv: arXiv:0712.1486v1.

Bontempi, G and S Ben Taieb (January 2011). Conditionally dependent strategies for multiple-step-
ahead prediction in local learning. International Journal of Forecasting 27(3), 689–699.

Bontempi, G, S Ben Taieb, and YA Le Borgne (2013). Machine Learning Strategies for Time Series
Forecasting. In: Business Intelligence. Ed. by MA Aufaure and E Zimányi. Vol. 138. Lecture Notes
in Business Information Processing. Springer, pp.62–77.

165

http://arxiv.org/abs/arXiv:0712.1486v1

Machine learning strategies for multi-step-ahead
time series forecasting

Bontempi, G, M Birattari, and H Bersini (1999). Local learning for iterated time series prediction.
In: International Conference on Machine Learning. In, pp.32–38.

Boor, C de (2001). A Practical Guide to Splines. Applied Mathematical Sciences. Springer New York.
Boucheron, S, G Lugosi, and P Massart (2013). Concentration Inequalities: A Nonasymptotic Theory of

Independence. OUP Oxford.
Box, GEP and GM Jenkins (1976). Time series analysis: forecasting and control. Holden-Day series in

time series analysis and digital processing. Holden-Day.
Brabanter, KD and JD Brabanter (2011). Kernel regression in the presence of correlated errors. The

Journal of Machine Learning Research 12, 1955–1976.
Brahim-Belhouari, S and A Bermak (November 2004). Gaussian process for nonstationary time

series prediction. Computational Statistics & Data Analysis 47(4), 705–712.
Breiman, L (1999). Prediction games & arcing algorithms. Neural computation 11(7), 1493–1517.
Breiman, L (2001). Statistical modeling: The two cultures. Statistical Science 16(3), 199–215.
Breiman, L and J Friedman (1997). Predicting multivariate responses in multiple linear regression.

eng. Journal of the Royal Statistical Society - Series B (Statistical Methodology) 59(1), 3–54.
Brockwell, PJ and RA Davis (2002). Introduction to time series and forecasting. 2nd. Taylor & Francis.
Brodsky, J and C Hurvich (1999). Multi-step forecasting for long-memory processes. Journal of

Forecasting 75(September 1996).
Brown, B and R Mariano (1984). Residual-Based Procedures for Prediction and Estimation in a

Nonlinear Simultaneous System. Econometrica: Journal of the Econometric Society 52(2), 321–344.
Brown, P and J Zidek (1980). Adaptive multivariate ridge regression. The Annals of Statistics 8(1),

64–74.
Buchen, T and K Wohlrabe (October 2011). Forecasting with many predictors: Is boosting a viable

alternative? Economics Letters 113(1), 16–18.
Bühlmann, P (April 2006). Boosting for high-dimensional linear models. The Annals of Statistics

34(2), 559–583.
Bühlmann, P and T Hothorn (November 2007). Boosting Algorithms: Regularization, Prediction

and Model Fitting. Statistical Science 22(4), 477–505.
Bühlmann, P and B Yu (2003). Boosting With the L2 Loss: Regression and Classification. Journal of

the American Statistical Association 98(462), 324–339.
Burman, P, E Chow, and D Nolan (1994). A cross-validatory method for dependent data. Biometrika

81(2), 351–358.
Burman, P and D Nolan (1992). Data dependent estimation of prediction functions. Journal of Time

Series Analysis 13(3), 189–207.
Carmack, PS, WR Schucany, JS Spence, RF Gunst, Q Lin, and RW Haley (January 2009). Far Casting

Cross-Validation. Journal of Computational and Graphical Statistics 18(4), 879–893.
Caruana, R (1997). Multitask Learning. Machine learning 28(1), 41–75.
Caruana, R, N Karampatziakis, and A Yessenalina (2008). An empirical evaluation of supervised

learning in high dimensions. In: International Conference on Machine, pp.96–103.
Casdagli, M (1989). Nonlinear prediction of chaotic time series. 35(3), 335–356.
Chatfield, C (December 2000). Time-Series Forecasting. CRC Press. Chap. 3, p. 267.
Chen, R, L Yang, and C Hafner (August 2004). Nonparametric multistep-ahead prediction in time

series analysis. eng. Journal of the Royal Statistical Society, Series B 66(3), 669–686.
Chevillon, G (2007). Direct multi-step estimation and forecasting. Journal of Economic Surveys

21(4), 746–785.
Chevillon, G (2008). Multi-step forecasting in the presence of weak trends, 1–40.
Chevillon, G and D Hendry (April 2005). Non-parametric direct multi-step estimation for forecast-

ing economic processes. International Journal of Forecasting 21(2), 201–218.
Chu, C and J Marron (1991). Comparison of two bandwith selectors with dependent errors. The

Annals of Statistics 19(4), 1906–1918.

166

Machine learning strategies for multi-step-ahead
time series forecasting

Claeskens, G and NL Hjort (2008). Model selection and model averaging. Vol. 330. Cambridge
University Press Cambridge.

Clements, M and D Hendry (1998). Forecasting Economic Time Series. Forecasting economic time
series. Cambridge University Press.

Clements, MP and DF Hendry (2006). Chapter 12 Forecasting with Breaks. Handbook of Economic
Forecasting 1, 605–657.

Clements, M and D Hendry (May 1996). Multi-step estimation for forecasting. Oxford Bulletin of
Economics and Statistics 48(1-2), 135–149.

Cleveland, RB, WS Cleveland, JE McRae, and I Terpenning (1990). STL: A Seasonal-Trend De-
composition Procedure Based on Loess (with Discussion). Journal of Official Statistics 6(1), 3–
73.

Cordeiro, C (2009). Forecasting time series with BOOT.EXPOS procedure. REVSTAT - Statistical
Journal 7(2), 135–149.

Corradi, V and NR Swanson (2006). “Predictive Density Evaluation.” In: ed. by G Elliott, C Granger,
and A Timmermann. Vol. 1. Handbook of Economic Forecasting. Elsevier. Chap. 5, pp. 197–284.

Cover, TM and JA Thomas (2012). Elements of information theory. John Wiley & Sons.
Cox, DR (1961). Prediction by exponentially weighted moving averages and related methods.

Journal of the Royal Statistical Society, Series B 23(2), 414–422.
Crone, SF (2006). Forecasting with Computational Intelligence - An Evaluation of Support Vec-

tor Regression and Artificial Neural Networks for Time Series Prediction. International Joint
Conference on Neural Networks, 3159–3166.

Crone, SF (2009a). Mining the past to determine the future: Comments. International Journal of
Forecasting 25(3), 456–460.

Crone, SF (2009b). NN5 forecasting competition. http://www.neural-forecasting-competition.
com/NN5/datasets.htm (visited on 06/04/2014).

Crone, SF, M Hibon, and K Nikolopoulos (July 2011). Advances in forecasting with neural networks?
Empirical evidence from the NN3 competition on time series prediction. International Journal
of Forecasting 27(3), 635–660.

De’Ath, G (2002). Multivariate Regression Trees : A New Technique for Modeling Species-
Environment Relationships. Ecology 83(4), 1105–1117.

Depuru, SSSR, L Wang, and V Devabhaktuni (August 2011). Smart meters for power grid: Chal-
lenges, issues, advantages and status. Renewable and Sustainable Energy Reviews 15(6), 2736–
2742.

Dietterich, TG (2000). Ensemble Methods in Machine Learning. Lecture Notes in Computer Science.
Lecture Notes in Computer Science 1857. Ed. by J Kittler and F Roli, 1–15.

Durbin, J and SJ Koopman (2001). Time series analysis by state space methods. Vol. 24. Oxford
University Press, p. 253.

Efron, B (1979). Bootstrap methods: another look at the jackknife. The annals of Statistics 7, 1–26.
Efron, B and RJ Tibshirani (1993). An Introduction to the Bootstrap. Vol. 57. CRC Press, p. 436.
Eilers, PH and BD Marx (June 2003). Multivariate calibration with temperature interaction using

two-dimensional penalized signal regression. Chemometrics and Intelligent Laboratory Systems
66(2), 159–174.

Eilers, P and B Marx (May 1996). Flexible smoothing with B-splines and penalties. Statistical science
11(2), 89–121.

Elman, J (June 1990). Finding structure in time. Cognitive Science 14(2), 179–211.
Evgeniou, T and M Pontil (2004). Regularized multi–task learning. In: Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining. ACM, pp.109–117.
Fan, J, F Han, and H Liu (2014). Challenges of Big Data analysis. National Science Review, 1–38.

arXiv: arXiv:1308.1479v1.

167

http://www.neural-forecasting-competition.com/NN5/datasets.htm
http://www.neural-forecasting-competition.com/NN5/datasets.htm
http://arxiv.org/abs/arXiv:1308.1479v1

Machine learning strategies for multi-step-ahead
time series forecasting

Fan, J and Q Yao (2003). Nonlinear time series: nonparametric and parametric methods. New York:
Springer, p. 576.

Fan, S and L Chen (2006). Short-Term Load Forecasting Based on an Adaptive Hybrid Method.
IEEE Transactions on Power Systems 21(1), 392–401.

Fan, S and RJ Hyndman (2012). Short-term load forecasting based on a semi-parametric additive
model. IEEE Transactions on Power Systems 27(1), 134–141.

Fay, D, JV Ringwood, M Condon, and M Kelly (2003). 24h electrical load data - a sequential or
partitioned time series? Neurocomputing 55(3-4), 469–498.

Fiebig, D (2001). Seemingly unrelated regression. A companion to theoretical econometrics, 101–121.
Findley, DF (1983). On the use of multiple models for multi-period forecasting. In: Proceedings of

Business and Economic Statistics, American Statistical Association, pp.528–531.
Findley, D, B Pötscher, and C Wei (2004). Modeling of time series arrays by multistep prediction or

likelihood methods. Journal of econometrics 118(1-2), 151–187.
Fliedner, G (2001). Hierarchical forecasting: issues and use guidelines. Industrial Management and

Data Systems 101(1), 5–12.
Franses, PH and R Legerstee (July 2009). A unifying view on multi-step forecasting using an

autoregression. Journal of Economic Surveys 24(3), 389–401.
Freund, Y and RRE Schapire (1996). Experiments with a New Boosting Algorithm. In: International

Conference on Machine Learning, pp.148–156.
Freund, Y and RE Schapire (August 1997). A Decision-Theoretic Generalization of On-Line Learn-

ing and an Application to Boosting. Journal of Computer and System Sciences 55(1), 119–139.
Friedman, J and T Hastie (2000). Additive logistic regression: a statistical view of boosting (With

discussion and a rejoinder by the authors). The annals of statistics 28(2), 337–407.
Friedman, JH (2001). Greedy function approximation: A gradient boosting machine. The Annals of

Statistics 29(5), 1189–1232.
Friedman, J (March 1998). Data mining and statistics: what’s the connection? de. Computing Science

and Statistics 29(1), 3–9.
Fukumizu, K, F Bach, and A Gretton (2007). Statistical consistency of kernel canonical correlation

analysis. The Journal of Machine Learning Research 8, 361–383.
Gardnerjr, E (2006). Exponential smoothing: The state of the art - Part II. International Journal of

Forecasting 22(4), 637–666.
Geman, S, E Bienenstock, and R Doursat (1992). Neural Networks and the Bias/Variance Dilemma.

Neural Computation 4(1), 1–58.
Girard, A, C Rasmussen, and J Candela (2003). Gaussian process priors with uncertain inputs-

application to multiple-step ahead time series forecasting. Neural Information Processing Systems,
545–552.

Gneiting, T (2011). Making and evaluating point forecasts. Journal of the American Statistical
Association 106(494), 746–762. arXiv: arXiv:0912.0902v2.

Gneiting, T and M Katzfuss (January 2014). Probabilistic Forecasting. Annual Review of Statistics
and Its Application 1(1), 125–151.

Gooijer, JGD and RJ Hyndman (2006). 25 years of time series forecasting. International Journal of
Forecasting 22(3), 443–473.

Greene, WH (2012). Econometric analysis. 7th ed. Prentice Hall.
Grigorievskiy, A, Y Miche, AM Ventelä, E Séverin, and A Lendasse (March 2014). Long-term time

series prediction using OP-ELM. Neural networks : the official journal of the International Neural
Network Society 51, 50–56.

Haggan, V and T Ozaki (1981). Modelling nonlinear random vibrations using an amplitude-
dependent autoregressive time series model. Biometrika 68(1), 189–196.

168

http://arxiv.org/abs/arXiv:0912.0902v2

Machine learning strategies for multi-step-ahead
time series forecasting

Hamzaçebi, C, D Akay, and F Kutay (2009). Comparison of direct and iterative artificial neural
network forecast approaches in multi-periodic time series forecasting. Expert Systems with
Applications 36(2,), 3839–3844.

Hand, DJ (May 1998). Data Mining: Statistics and More? The American Statistician 52(2), 112.
Hand, DJ (July 2009a). Mining the past to determine the future: Problems and possibilities. Inter-

national Journal of Forecasting 25(3), 441–451.
Hand, DJ (July 2009b). Mining the past to determine the future: Rejoinder. International Journal of

Forecasting 25(3), 461–462.
Hand, D (2013). Data, Not Dogma: Big Data, Open Data, and the Opportunities Ahead. Advances

in Intelligent Data Analysis XII, 1–12.
Hardoon, DR and J Shawe-Taylor (November 2010). Sparse canonical correlation analysis. Machine

Learning 83(3), 331–353.
Hardoon, DR, S Szedmak, and J Shawe-Taylor (December 2004). Canonical correlation analysis: an

overview with application to learning methods. Neural computation 16(12), 2639–64.
Hart, D and TE Wehrly (1986). Using Repeated Estimation Regression Kernel Data Measurements.

Journal of the American Statistical Association 81(396), 1080–1088.
Hart, J (1994). Automated kernel smoothing of dependent data by using time series cross-validation.

Journal of the Royal Statistical Society. Series B (Methodological) 56(3), 529–542.
Hastie, TJ and RJ Tibshirani (1990). Generalized additive models. Chapman & Hall/CRC Monographs

on Statistics & Applied Probability. Chapman & Hall/CRC.
Hastie, T, R Tibshirani, and J Friedman (2009). The elements of statistical learning: data mining,

inference and prediction. 2nd ed. Springer.
Haywood, J and GT Wilson (1997). Fitting Time Series Models by Minimizing Multistep-ahead

Errors: a Frequency Domain Approach. Journal of the Royal Statistical Society B 59(1), 237–254.
Hechenbichler, KSK̃ (2014). kknn: Weighted k-Nearest Neighbors. http://cran.r-project.org/

package=kknn.
Hendry, DF and GE Mizon (2013). “Open-Model Forecast-Error Taxonomies.” In: Recent Advances

and Future Directions in Causality, Prediction, and Specification Analysis, pp.219–240.
Hendry, D (2000). A general forecast-error taxonomy. In: Econometric Society World Congress, pp.1–

17.
Hoerl, AE and RW Kennard (1970). Ridge Regression: Applications to Nonorthogonal Problems.

Technometrics 12, 69–82.
Holan, SH, R Lund, and G Davis (2010). The ARMA alphabet soup: A tour of ARMA model variants.

Statistics Surveys 4, 232–274.
Hong, T (2010). “Short Term Electric Load Forecasting.” Doctoral dissertation.
Hong, T (2014). Energy forecasting: Past, present, and future. Foresight: The International Journal of

Applied Forecasting, 43–49.
Hong, T, P Pinson, and S Fan (August 2013). Global Energy Forecasting Competition 2012. Interna-

tional Journal of Forecasting 38(2), 357–363.
Hothorn, T, P Bühlmann, T Kneib, M Schmid, and B Hofner (2010). Model-based boosting 2.0. The

Journal of Machine Learning Research 11, 2109–2113.
Huang, GB, QY Zhu, and CK Siew (December 2006). Extreme learning machine: Theory and

applications. Neurocomputing 70(1), 489–501.
Hyndman, R and Y Khandakar (2008). Automatic time series for forecasting: the forecast package

for R. Journal Of Statistical Software 27(3), 1–22.
Hyndman, RJ, RA Ahmed, G Athanasopoulos, and HL Shang (September 2011). Optimal combi-

nation forecasts for hierarchical time series. Computational Statistics and Data Analysis 55(9),
2579–2589.

Hyndman, RJ and G Athanasopoulos (2014). Forecasting: principles and practice. OTexts.

169

http://cran.r-project.org/package=kknn
http://cran.r-project.org/package=kknn

Machine learning strategies for multi-step-ahead
time series forecasting

Hyndman, RJ and A Koehler (2006). Another look at measures of forecast accuracy. International
Journal of Forecasting 22(4), 679–688.

Hyndman, RJ, AB Koehler, JK Ord, and RD Snyder (2008). Forecasting with exponential smoothing:
the state space approach. Berlin: Springer-Verlag.

Ing, CK (2003). Multistep prediction in autoregressive processes. Econometric Theory 19(2), 254–
279.

Ing, CK (April 2004). Selecting optimal multistep predictors for autoregressive processes of un-
known order. The Annals of Statistics 32(2), 693–722. arXiv: 0406433v1 [arXiv:math].

Inoue, A and L Kilian (June 2008). How Useful Is Bagging in Forecasting Economic Time Series?
A Case Study of U.S. Consumer Price Inflation. Journal of the American Statistical Association
103(482), 511–522.

Izenman, AJ (1975). Reduced-rank regression for the multivariate linear model. Journal of Multi-
variate Analysis 5(2), 248–264.

James, G, T Hastie, D Witten, and R Tibshirani (2013). An Introduction to Statistical Learning: With
Applications in R. Springer Texts in Statistics. Springer London, Limited.

Jin, F and S Sun (June 2008). Neural network multitask learning for traffic flow forecasting. 2008
IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence), 1897–1901.

Judd, K and M Small (2000). Towards long-term prediction. Physica D 136(1), 31–44.
Kang, IB (July 2003). Multi-period forecasting using different models for different horizons: an

application to U.S. economic time series data. International Journal of Forecasting 19(3), 387–400.
Kantz, H and T Schreiber (2004). Nonlinear time series analysis. New York, NY, USA: Cambridge

University Press.
Khosravi, A, S Nahavandi, D Creighton, and AF Atiya (July 2011a). Comprehensive Review of

Neural Network-Based Prediction Intervals and New Advances. IEEE transactions on neural
networks / a publication of the IEEE Neural Networks Council 22(9), 1341–1356.

Khosravi, A, S Nahavandi, D Creighton, and AF Atiya (March 2011b). Lower upper bound estima-
tion method for construction of neural network-based prediction intervals. IEEE transactions on
neural networks / a publication of the IEEE Neural Networks Council 22(3), 337–46.

Kim, K (September 2003). Financial time series forecasting using support vector machines. Neuro-
computing 55(1), 307–319.

Kim, M and J Leskovec (2013). Nonparametric multi-group membership model for dynamic
networks. Advances in neural information processing systems, 1–10.

Kline, DM (2004). “Methods for multi-step time series forecasting with neural networks.” In: Neural
Networks in Business Forecasting. Ed. by GP Zhang. Information Science Publishing, pp.226–250.

Kneib, T, T Hothorn, and G Tutz (June 2009). Variable selection and model choice in geoadditive
regression models. Biometrics 65(2), 626–34.

Kock, A and T Teräsvirta (2011). Forecasting with nonlinear time series models. Oxford Handbook
of Economic Forecasting.

Kohavi, R (1995). A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence -
Volume 2, pp.1137–1143.

Kohonen, T, MR Schroeder, and TS Huang, eds. (2001). Self-Organizing Maps. 3rd. Secaucus, NJ,
USA: Springer-Verlag New York, Inc.

Kreiss, JP and E Paparoditis (December 2011). Bootstrap methods for dependent data: A review.
Journal of the Korean Statistical Society 40(4), 357–378.

Ladiray, D and B Quenneville (2001). Seasonal Adjustment With the X-11 Method. Lecture Notes in
Statistics. Springer.

Lam, BC (2014). “Challenges to Time Series Analysis in the Computer Age.” In: Statistics - Discover-
ing your future power. China Statistics Press, pp.1–15.

170

http://arxiv.org/abs/0406433v1

Machine learning strategies for multi-step-ahead
time series forecasting

Larrañaga, P, B Calvo, R Santana, C Bielza, J Galdiano, I Inza, JA Lozano, R Armañanzas, G Santafé,
A Pérez, et al. (2006). Machine learning in bioinformatics. Briefings in bioinformatics 7(1), 86–
112.

Law, AM and WD Kelton (2000). Simulation Modelling and Analysis. 3rd. McGraw-Hill.
Lee, KL and Sa Billings (January 2003). A new direct approach of computing multi-step ahead

predictions for non-linear models. International Journal of Control 76(8), 810–822.
Lehmann, EL and JP Romano (2005). Testing Statistical Hypotheses. Springer Texts in Statistics.

Springer.
Lemke, C and B Gabrys (2010). Meta-learning for time series forecasting and forecast combination.

Neurocomputing 73(10), 2006–2016.
Lendasse, A, T Honkela, and O Simula (2010). European Symposium on Times Series Prediction.

Neurocomputing 73(10-12), 1919–1922.
Lin, J and C Granger (1994). Forecasting from Non-linear models in practice. Journal of Forecasting

13(1), 1–9.
Lin, J and R Tsay (1996). Co-integration constraint and forecasting: An empirical examination.

Journal of Applied Econometrics 11(5), 519–538.
Lin, X, C Genest, DL Banks, G Molenberghs, DW Scott, and JL Wang (2014). Past, Present, and

Future of Statistical Science. Ed. by X Lin, C Genest, DL Banks, G Molenberghs, DW Scott, and
JL Wang. Chapman and Hall/CRC.

Liu, S (1996). Model selection for multiperiod forecasts. Biometrika 83(4), 861–873.
Liu, Y, A Niculescu-Mizil, AC Lozano, and Y Lu (2010). Learning temporal causal graphs for

relational time-series analysis. In: Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pp.687–694.

Lutz, R and P Buhlmann (2006). Boosting for high-multivariate responses in high-dimensional
linear regression. Statistica Sinica 16(2), 471–494.

Makridakis, SG and M Hibon (2000). The M3-Competition: results, conclusions and implications.
International Journal of Forecasting 16(4), 451–476.

Mallows, C (2000). Some comments on Cp. Technometrics 15(4), 661–675.
Marcellino, M, J Stock, and M Watson (November 2006). A comparison of direct and iterated

multistep AR methods for forecasting macroeconomic time series. Journal of Econometrics
135(1), 499–526.

Marx, BD and PH Eilers (February 2005). Multidimensional Penalized Signal Regression. Techno-
metrics 47(1), 13–22.

Matias, J (2005). Multi-output Nonparametric Regression. In: Progress in artificial intelligence: 12th
Portuguese Conference on Artificial Intelligence, EPIA 2005, Covilhã, Portugal, December 5-8, 2005:
proceedings. Vol. 3808. Springer-Verlag New York Inc, pp.288.

Mcdonald, DJ, CR Shalizi, and M Schervish (2011). “Generalization error bounds for stationary
autoregressive models.”

McElroy, T and M Wildi (July 2013). Multi-step-ahead estimation of time series models. Interna-
tional Journal of Forecasting 29(3), 378–394.

McNames, J (1998). A nearest trajectory strategy for time series prediction. In: Proceedings of the
InternationalWorkshop on Advanced Black-Box Techniques for Nonlinear Modeling. K.U. Leuven.
Belgium, pp.112–128.

McNames, J, JAK Suykens, and J Vandewalle (1999). Winning Entry of the {K. U.} Leuven Time
Series Prediction Competition. International Journal of Bifurcation and Chaos 9(8), 1485–1500.

McSharry, PE, S Bouwman, and G Bloemhof (2005). Probabilistic forecasts of the magnitude and
timing of peak electricity demand. IEEE Transactions on Power Systems 20(2), 1166–1172.

Mease, D (2008). Evidence Contrary to the Statistical View of Boosting : A Rejoinder to Responses.
Journal of Machine Learning Research 9, 195–201.

171

Machine learning strategies for multi-step-ahead
time series forecasting

Mease, D and A Wyner (2008). Evidence contrary to the statistical view of boosting. The Journal of
Machine Learning Research 9, 131–156.

Medeiros, MC, T Teräsvirta, and G Rech (January 2006). Building neural network models for time
series: a statistical approach. Journal of Forecasting 25(1), 49–75.

Mitchell, TM (1997). Machine Learning. Ed. by A Mellouk and A Chebira. Vol. 4. An Artificial
Intelligence Approach 1. McGraw-Hill. Chap. Classifier, pp. 417–433.

Mohri, M, A Rostamizadeh, and A Talwalkar (2012). Foundations of Machine Learning. The MIT
Press.

Murphy, KP (2012). Machine Learning: A Probabilistic Perspective. Adaptive computation and
machine learning series. MiT Press.

Opsomer, J, Y Wang, and Y Yang (2001). Nonparametric Regression with Correlated Errors. Statisti-
cal Science 16(2), 134–153.

Ou, G and YL Murphey (January 2007). Multi-class pattern classification using neural networks.
Pattern Recognition 40(1), 4–18.

Palit, AK and D Popovic (2005). Computational Intelligence in Time Series Forecasting: Theory and
Engineering Applications (Advances in Industrial Control). Secaucus, NJ, USA: Springer-Verlag
New York, Inc.

Pesaran, MHM, A Pick, and A Timmermann (March 2011). Variable selection, estimation and
inference for multi-period forecasting problems. Journal of Econometrics 164(250), 173–187.

Pinson, P (November 2013). Wind Energy: Forecasting Challenges for Its Operational Management.
Statistical Science 28(4), 564–585.

Poskitt, DS and AR Tremayne (1986). The selection and use of linear and bilinear time series
models. International Journal of Forecasting 2, 101–114.

Price, S (2009). Mining the past to determine the future: Comments. International Journal of
Forecasting 25(3), 452–455.

Proietti, T (April 2011). Direct and iterated multistep AR methods for difference stationary pro-
cesses. International Journal of Forecasting 27(2), 266–280.

Racine, J (2000). Consistent cross-validatory model-selection for dependent data: hv-block cross-
validation. Journal of econometrics 99, 39–61.

Ramanathan, R, R Engle, CW Granger, F Vahid-Araghi, and C Brace (June 1997). Shorte-run
forecasts of electricity loads and peaks. International Journal of Forecasting 13(2), 161–174.

Ridgeway, G (1999). The state of boosting. Computing Science and Statistics 31, 172–181.
Rissanen, J (1986). Order estimation by accmulated prediction error. Journal of Applied Probability

23(A), 55–61.
Robinzonov, N, G Tutz, and T Hothorn (2012). Boosting techniques for nonlinear time series models.

AStA Advances in Statistical Analysis 96, 99–122.
Rosipal, R and LJ Trejo (March 2002). Kernel partial least squares regression in reproducing kernel

hilbert space. The Journal of Machine Learning Research 2, 97–123.
Rubio, G, H Pomares, I Rojas, and LJ Herrera (May 2010). A heuristic method for parameter

selection in LS-SVM: Application to time series prediction. International Journal of Forecasting.
Rudin, C and K Wagstaff (November 2014). Machine learning for science and society. Machine

Learning 95(1), 1–9.
Rumelhart, DE, GE Hinton, and RJ Williams (1986). Learning representations by back-propagating

errors. Nature 323, 533–536.
Ruppert, D (2002). Selecting the Number of Knots for Penalized Splines. Journal Of Computational

And Graphical Statistics 11, 735–757.
Sapankevych, N and R Sankar (2009). Time Series Prediction Using Support Vector Machines: A

Survey. IEEE Computational Intelligence Magazine 4(2), 24–38.
Schapire, R (1990). The strength of weak learnability. Machine learning 5(2), 197–227.
Schapire, RE and Y Freund (2012). Boosting: Foundations and Algorithms. The MIT Press.

172

Machine learning strategies for multi-step-ahead
time series forecasting

Schapire, RE, Y Freund, P Bartlett, and WS Lee (1998). Boosting the margin: a new explanation for
the effectiveness of voting methods. Annals of Statistics 26(5), 1651–1686.

Schmid, M and T Hothorn (December 2008). Boosting additive models using component-wise
P-Splines. Computational Statistics & Data Analysis 53(2), 298–311.

Schwarz, G (1978). Estimating the dimension of a model. The annals of statistics 6(2), 461–464.
Shafik, N and G Tutz (May 2009). Boosting nonlinear additive autoregressive time series. Computa-

tional Statistics & Data Analysis 53(7), 2453–2464.
Shao, J (1993). Linear model selection by cross-validation. Journal of the American statistical Associa-

tion 88(422), 486–494.
Shao, J (1997). An asymptotic theory for linear model selection. Statistica Sinica 7, 221–264.
Shmueli, G (August 2010). To Explain or to Predict? Statistical Science 25(3), 289–310. arXiv:

arXiv:1101.0891v1.
Shrestha, DL and DP Solomatine (March 2006). Machine learning approaches for estimation of

prediction interval for the model output. Neural networks : the official journal of the International
Neural Network Society 19(2), 225–35.

Simon, G, a Lendasse, M Cottrell, JC Fort, and M Verleysen (September 2005). Time series forecast-
ing: Obtaining long term trends with self-organizing maps. Pattern Recognition Letters 26(12),
1795–1808.

Simon, G, Ja Lee, M Cottrell, and M Verleysen (August 2007). Forecasting the CATS benchmark
with the Double Vector Quantization method. Neurocomputing 70(13), 2400–2409.

Simon, G, A Lendasse, M Cottrell, JC Fort, and M Verleysen (2004). Double quantization of the
regressor space for long-term time series prediction: method and proof of stability. Neural
Networks 17(8), 1169–1181.

Smith-Miles, Ka (December 2008). Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys 41(1), 1–25.

Solnon, M, S Arlot, and F Bach (2012). Multi-task regression using minimal penalties. Journal of
Machine Learning Research 13, 2773–2812.

Sorjamaa, A, J Hao, and A Lendasse (2005). Mutual Information and k-Nearest Neighbors Approxi-
mator for Time Series Prediction. In: pp.553–558.

Sorjamaa, A, J Hao, N Reyhani, Y Ji, and A Lendasse (October 2007). Methodology for long-term
prediction of time series. Neurocomputing 70(16), 2861–2869.

Sorjamaa, A and A Lendasse (April 2006). Time series prediction using dirrec strategy. In: ESANN,
European Symposium on Artificial Neural Networks, European Symposium on Artificial Neural
Networks. Ed. by M Verleysen. European Symposium on Artificial Neural Networks. Bruges,
Belgium: Citeseer, pp.143–148.

Spinoza, M and T Falck (2008). Time Series Prediction using LS-SVMs. In: ESTSP 2008: Proceedings.
Ed. by A Lendasse, pp.294.

Stock, JH and MW Watson (2006). Chapter 10 Forecasting with Many Predictors. Handbook of
Economic Forecasting 1, 515–554.

Stock, J and M Watson (1999). “A Comparison of Linear and Nonlinear Univariate Models for Fore-
casting Macroeconomic Time Series.” In: Cointegration, Causality, and Forecasting A Festschrift in
Honour of Clive W.J. Granger R.F. Engle and H. White. Oxford Uni.

Stoica, P and A Nehorai (1989). On Multistep Prediction Error Methods for time series models.
Journal of Forecasting 8(4), 357–368.

Stone, CJ (1985). Additive Regression and Other Nonparametric Models. The annals of Statistics
13(2), 689–705.

Stone, M (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike’s
information. Journal of the Royal Statistical Society. Series B 39(1), 44–47.

Suykens, J, T Van Gestel, KD Brabanter, B De Moor, and J Vandewalle (2002). Least Squares Support
Vector Machines. World Scientific, Singapore.

173

http://arxiv.org/abs/arXiv:1101.0891v1

Machine learning strategies for multi-step-ahead
time series forecasting

Suykens, J and J Vandewalle (1999). Least Squares Support Vector Machine Classifiers. Neural
processing letters 9, 293–298.

Suykens, JAK and J Vandewalle (2000). The K.U.Leuven competition data: a challenge for advanced
neural network techniques. In: ESANN, pp.299–304.

Swanson, NR (1995). Model-Selection Approach to Information in Assessing Using Networks.
Journal of Business & Economic Statistis 13(3), 265–275.

Tashman, LJ (2000). Out-of-sample tests of forecasting accuracy: an analysis and review. Interna-
tional Journal of Forecasting 16(4), 437–450.

Tay, AS and KF Wallis (July 2000). Density forecasting: a survey. Journal of Forecasting 19(4), 235–
254.

Taylor, JW (2003). Short-term electricity demand forecasting using double seasonal exponential
smoothing. Journal of the Operational Research Society 54, 799–805.

Teräsvirta, T (1994). Specification, estimation, and evaluation of Smooth Autoregressive Models.
Journal of the american Statistical association 89(425), 208–218.

Teräsvirta, T (2006). Forecasting economic variables with nonlinear models. Handbook of economic
forecasting 1, 413–457.

Teräsvirta, T and HM Anderson (1992). Characterizing nonlinearties in business cycles using
smooth transition autoregressive models. Journal of Applied Econometrics 7, 119–136.

Teräsvirta, T, D van Dijk, and MC Medeiros (October 2005). Linear models, smooth transition au-
toregressions, and neural networks for forecasting macroeconomic time series: A re-examination.
International Journal of Forecasting 21(4), 755–774.

Teräsvirta, T, D Tjostheim, and CW Granger (2010). Modelling Nonlinear Economic Time Series.
Advanced Texts in Econometrics. OUP Oxford.

Theodosiou, M (February 2011). Forecasting monthly and quarterly time series using STL decom-
position. International Journal of Forecasting 27(4), 1178–1195.

Thissen, U (November 2003). Using support vector machines for time series prediction. Chemomet-
rics and Intelligent Laboratory Systems 69(1), 35–49.

Tiao, G and D Xu (1993). Robustness of maximum likelihood estimates for multi-step predictions:
the exponential smoothing case. Biometrika 80(3), 623–641.

Tiao, GC and RS Tsay (1994). Some advances in non-linear and adaptive modelling in time-series.
Journal of forecasting 13(2), 109–131.

Tong, H (1990). Non-linear Time Series: A Dynamical System Approach. Oxford University Press.
Tong, H and KS Lim (1980). Threshold Autoregression, Limit Cycles and Cyclical Data. Journal of

the Royal Statistical Society. Series B (Methodological) 42(3), pages.
Tong, H (1995). A personal overview of non-linear time series analysis from a chaos perspective.

Scandinavian Journal of Statistics 22, 399–445.
Tong, H (2011). Threshold models in time series analysis – 30 years on. Statistics and Its Interface

4(2), 107–118.
Tran, VT, BS Yang, and ACC Tan (July 2009). Multi-step ahead direct prediction for the ma-

chine condition prognosis using regression trees and neuro-fuzzy systems. Expert Systems with
Applications 36(5), 9378–9387.

Tresp, V and HP Kriegel (December 2006). Multi-Output Regularized Feature Projection. IEEE
Transactions on Knowledge and Data Engineering 18(12), 1600–1613.

Ueda, N and R Nakano (1996). Generalization error of ensemble estimators. Neural Networks, 1996.,
IEEE International Conference on 1, 90–95.

Vaccaro, A, G Bontempi, SB Taieb, and D Villacci (November 2012). Adaptive local learning
techniques for multiple-step-ahead wind speed forecasting. Electric Power Systems Research
83(1), 129–135.

174

Machine learning strategies for multi-step-ahead
time series forecasting

Van Gestel, T, J Suykens, D Baestaens, A Lambrechts, G Lanckriet, B Vandaele, B De Moor, and J
Vandewalle (2001). Financial time series prediction using least squares support vector machines
within the evidence framework. Neural Networks, IEEE Transactions on 12(4), 809–821.

Vapnik, VN (1998). Statistical Learning Theory. Wiley-Interscience.
Varian, HR (2014). Big Data: New Tricks for Econometrics. Journal of Economic Perspectives 28(2),

3–28.
Vazquez, E and E Walter (2003). Multi-output support vector regression. In: 13th IFAC Symposium

on System Identification. Citeseer, pp.1820–1825.
Venables, WN and BD Ripley (2002). Modern Applied Statistics with S. Fourth. New York: Springer.
Verbesselt, J, R Hyndman, G Newnham, and D Culvenor (January 2010). Detecting trend and

seasonal changes in satellite image time series. Remote Sensing of Environment 114(1), 106–115.
Wang, X, K Smith-Miles, and RJ Hyndman (2009). Rule induction for forecasting method selection:

Meta-learning the characteristics of univariate time series. Neurocomputing 72(10-12), 2581–
2594.

Wasserman, L (2004). All of Statistics: A Concise Course in Statistical Inference. Springer Texts in
Statistics. Springer.

Wasserman, L (2014). “Rise of the Machines.” In: Past, Present and Future of Statistical Science. Ed. by
X Lin, C Genest, DL Banks, G Molenberghs, DW Scott, and JL Wang, pp.646.

Weigend, AS and NA Gershenfeld (1994). Time Series Prediction: Forecasting the Future and Under-
standing the Past. Ed. by AS Weigend and NA Gershenfeld. Santa Fe Institute. Addison-Wesley.

Weiss, AA (1991). Multi-step estimation and forecasting in dynamic models. Journal of Econometrics
48, 135–149.

Werbos, P (1988). Generalization of backpropagation with application to a recurrent gas market
model. Neural Networks 1, 339–356.

Werbos, P (1990). Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE 78(10), 1550–1560.

Weston, J, O Chapelle, A Elisseeff, B Schölkopf, and V Vapnik (2003). “Kernel Dependency Es-
timation.” In: Advances in Neural Information Processing Systems 15. Ed. by ST S Becker and
K Obermayer. MIT Press, pp.873–880.

Wichard, JD (May 2010). Forecasting the NN5 time series with hybrid models. International Journal
of Forecasting 27(3), 700–707.

Wold, H (1975). “Soft modelling by latent variables: The nonlinear iterative partial least squares
(NIPALS) approach.” In: Perspectives in Probability and Statistics, pp.117–142.

Wold, H (2006). “Partial Least Squares.” In: Encyclopedia of Statistical Sciences, pp.9.
Wold, S (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory

Systems 58(2), 109–130.
Wood, SN (December 2006). Low-rank scale-invariant tensor product smooths for generalized

additive mixed models. Biometrics 62(4), 1025–36.
Wooldridge, J (2012). Introductory Econometrics: A Modern Approach. Upper Level Economics Titles

Series. Cengage Learning.
Xia, Y and H Tong (February 2011). Feature Matching in Time Series Modeling. Statistical Science

26(1), 21–46. arXiv: arXiv:1104.3073v2.
Xue, Y, X Liao, L Carin, and B Krishnapuram (2007). Multi-task learning for classification with

Dirichlet process priors. Journal of Machine Learning Research 8, 35–63.
Yin, J, P Sharma, I Gorton, and B Akyoli (2013). Large-Scale Data Challenges in Future Power Grids.

2013 IEEE Seventh International Symposium on Service-Oriented System Engineering, 324–328.
Zadeh, LA (1975). Fuzzy logic and approximate reasoning. Synthese 30(3-4), 407–428.
Zhang, GP (2012). “Neural Networks for Time-Series Forecasting.” In: Handbook of Natural Com-

puting. Ed. by R Grzegorz, B Thomas, and K JoostN., pp.461–477.

175

http://arxiv.org/abs/arXiv:1104.3073v2

Machine learning strategies for multi-step-ahead
time series forecasting

Zhang, GP and M Qi (2005). Neural network forecasting for seasonal and trend time series.
European Journal of Operational Research 160(2), 501–514.

Zhang, G and D Kline (2007). Quarterly time-series forecasting with neural networks. IEEE
Transactions on Neural Networks 18(6), 1800–1814.

Zhang, GP, EB Patuwo, and H Michael Y. (1998). Forecasting with artificial neural networks: The
state of the art. International Journal of Forecasting 14(1), 35–62.

Zhang, L, WD Zhou, PC Chang, JW Yang, and FZ Li (January 2013). Iterated time series prediction
with multiple support vector regression models. Neurocomputing 99, 411–422.

Zhang, X and J Hutchinson (1994). Simple architectures on fast machines: practical issues in nonlin-
ear time series prediction. In: Time Series Prediction Forecasting the Future and Understanding the
Past. Ed. by AS Weigend and NA Gershenfeld. Santa Fe Institute. Addison-Wesley, pp.219–241.

176

Appendix A

Real-world experiments

We describe the time series data and the methodology used in the real-world experiments of both
sections 5.4 and 6.5.

A.1 Time series data

A.1.1 The M3 competition data

The M3 competition dataset consists of 3003 monthly, quarterly, and annual time series. The
competition was organized by the International Journal of Forecasting (Makridakis and Hibon, 2000),
and has attracted a lot of attention. The time series of the M3 competition have a variety of features.
Some have a seasonal component, some possess a trend, and some are just fluctuating around some
level.

We have considered all the monthly time series in the M3 data. The number of time series
considered was M = 1428 with a range of lengths between T = 48 and T = 126. For these monthly
time series, the competition required forecasts for the next H = 18 months, using the given
historical points. Figure A.1 shows four time series from the set of 1428 time series.

A.1.2 The NN5 competition data

The NN5 competition dataset (Crone, 2009b) comprises M = 111 daily time series each containing
T = 735 observations. Each of these time series represents roughly two years of daily cash money
withdrawal amounts at ATM machines at one of several cities in the UK. The competition was
organized in order to compare and evaluate the performance of computational intelligence methods.
For all these time series, the competition required forecasts of the next H = 56 days, using the
given historical points. Figure A.2 shows four time series from the NN5 data set.

A.2 Methodology

The NN5 dataset includes some zero values that indicate no money withdrawal occurred and
missing observations for which no value was recorded. We replaced these two types of gaps using
the method proposed in Wichard (2010): the missing or zero observation yt is replaced by the
median of the set {yt−365, yt−7, yt+7, yt+365} using only non-zero and non-missing values.

177

Machine learning strategies for multi-step-ahead
time series forecasting

Month

V
al

ue
s

1984 1986 1988 1990 1992

30
00

50
00

70
00

Month

V
al

ue
s

1982 1984 1986 1988 1990

0
20

00
60

00

Month

V
al

ue
s

1982 1984 1986 1988 1990

40
00

60
00

80
00

Month

V
al

ue
s

1982 1984 1986 1988 1990

40
00

10
00

0
16

00
0

Figure A.1: Four time series from the M3 forecasting competition.

We adopted the forecasting with decomposition approach, that is instead of directly forecasting the
initial time series, we forecast each components separately and then combine the forecasts of each
component to obtain the final forecasts, as explained in Section 2.3.2.

For both competitions, we deseasonalized the time series using the STL (Seasonal-Trend decompo-
sition based on Loess smoothing). Of course, the seasonality has been restored after forecasting.
For the parameter controlling the loess window for seasonal extraction, we used the value s = 50 for
the M3 competition to allow a small change in the seasonality over the time series and s = periodic
for the NN5 competition.

After deseasonalization, we applied the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for which
the null-hypothesis is that the time series is stationary. If the test is rejected, we applied a first
difference. Of course, to produce the final forecasts, we first undifferenced the forecasts from the
differenced time series and then we restored back the seasonality.

For the model selection procedure, we used the same approach as for the Monte Carlo simulations
which is explained in Section 4.3.2. One difference is that we allowed the value of the lag orders to
vary in the set {1 : 5} for the M3 competition and in the set {1 : 10} for the NN5 competition.

Since the time series have different scales, we did not use MSE. Instead, we considered two other
forecast accuracy measures. The first is the symmetric mean absolute percentage error (sMAPE)

178

Machine learning strategies for multi-step-ahead
time series forecasting

Day

V
al

ue
s

0 200 400 600

0
10

20
30

40

Day

V
al

ue
s

0 200 400 600

0
10

30
50

Day

V
al

ue
s

0 200 400 600

0
10

30
50

Day

V
al

ue
s

0 200 400 600

0
20

40

Figure A.2: Four time series from the NN5 forecasting competition.

as defined in expression (2.3.3) of Section 2.3.6. Hyndman and Koehler (2006) discussed some
problems with this measure, but as it was used by Makridakis and Hibon (2000), we use it to enable
comparisons with the M3 competition. The second accuracy measure is the mean absolute scaled
error (MASE) introduced by Hyndman and Koehler (2006) and defined in expression (2.3.4) of
Section 2.3.6.

179

Appendix B

Simulated time series

180

Machine learning strategies for multi-step-ahead
time series forecasting

Time

V
al

ue
s

0 100 200 300 400 500

−
5

0
5

Time

V
al

ue
s

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4
6

Time

V
al

ue
s

0 100 200 300 400 500

−
5

0
5

Time

V
al

ue
s

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4
6

Figure B.1: Four simulated time series from the AR DGP.

181

Machine learning strategies for multi-step-ahead
time series forecasting

Time

V
al

ue
s

0 100 200 300 400 500

−
4

−
2

0
2

4

Time

V
al

ue
s

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4

Time

V
al

ue
s

0 100 200 300 400 500

−
4

−
2

0
2

Time

V
al

ue
s

0 100 200 300 400 500

−
4

−
2

0
2

4

Figure B.2: Four simulated time series from the NAR DGP.

182

Machine learning strategies for multi-step-ahead
time series forecasting

Time

V
al

ue
s

0 100 200 300 400 500−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Time

V
al

ue
s

0 100 200 300 400 500

−
0.

5
0.

0
0.

5

Time

V
al

ue
s

0 100 200 300 400 500

−
0.

5
0.

0
0.

5

Time

V
al

ue
s

0 100 200 300 400 500

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure B.3: Four simulated time series from the STAR DGP.

183

List of Notations

YT = [y1, . . . , yT] Time series with T observations

H Number of forecast horizons required

xt = [yt , . . . , yt−d]′ Input vector at time t with d lagged variables

h Forecast horizon

p Estimated lag order

zt = [yt , . . . , yt−p]′ Input vector at time t with p lagged variables

rt = [yt , . . . , yt−ph]
′ Input vector at time t with ph lagged variables

β Vector of parameters

ψ Vector of hyperparameters

θ = [β,ψ] Vector of parameters and hyperparameters

m(h) Model m used h times recursively

mh Direct model for horizon h

φ Vector of parameters for the one-step-ahead model

γ Vector of parameters for direct models

ν Shrinkage coefficient

α Regularization parameter

REC Strategy defined in expression (3.3.2)

RTI Strategy defined in expression (3.3.4)

RJT Strategy defined in expression (6.3.3)

RJT2 Strategy defined in expression (6.3.4)

RJTL Strategy defined in expression (6.3.7)

DIR Strategy defined in expression (3.3.6)

DJT Strategy defined in expression (6.3.6)

DJTL Strategy defined in expression (6.3.8)

LIN Linear model

184

Machine learning strategies for multi-step-ahead
time series forecasting

MLP Neural networks

KNN Nearest neighbors

BST1 Gradient boosting model with univariate weak learner (additive model)

BST2 Gradient boosting model with bivariate weak learner

AR Linear autoregressive process

NAR Nonlinear autoregressive process

STAR Smooth transition autoregressive process

DGP Data Generating Process

OLS Ordinary Least Squares

MS(F)E Mean Squared (Forecast) Error

185

List of Figures

4.1 STAR DGP. The MSE of recursive forecasts generated with different learning models
(by column) and different time series lengths (by row) is decomposed into noise
(in grey), bias (in cyan) and variance (in yellow). The stacked area plots show the
relative contribution of each component to the total MSE over the forecast horizon. 58

4.2 STAR DGP. The MSE of direct forecasts generated with different learning models (in
column) and different time series lengths (in row) is decomposed into noise (in grey),
bias (in cyan) and variance (in yellow). The stacked area plots show the relative
contribution of each component to the total MSE over the forecast horizon. 59

4.3 AR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with a
well-specified linear model (LIN) and a misspecified linear model (LINMIS). 61

4.4 STAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with
the LIN model. 63

4.5 NAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with
the LIN model. 64

4.6 AR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with the
MLP and the KNN model. 66

4.7 AR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with the
MLP and the LIN model. 67

4.8 AR DGP. MSE decomposition of recursive (REC), multi-step recursive (RTI) and
direct (DIR) forecasts with the KNN model. 68

4.9 STAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with
the MLP and the KNN model. 70

4.10 NAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with
the MLP and the KNN model. 71

4.11 STAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with
the MLP and the LIN model. 72

4.12 NAR DGP. MSE decomposition of recursive (REC) and direct (DIR) forecasts with
the MLP and the LIN model. 73

4.13 STAR DGP. MSE decomposition of recursive (REC), multi-step recursive (RTI) and
direct (DIR) forecasts with the KNN model. 74

4.14 NAR DGP. MSE decomposition of recursive (REC), multi-step recursive (RTI) and
direct (DIR) forecasts with the KNN model. 75

186

Machine learning strategies for multi-step-ahead
time series forecasting

5.1 AR DGP. MSE decomposition of rectify and boost forecasts with a well-specified
linear base model (RFY-KNN and RFY-BST2, respectively), and a misspecified linear
base model (RFYMIS-KNN and RFYMIS-BST2, respectively). The results of Figure
4.3 are also included. 85

5.2 STAR DGP. MSE decomposition of rectify (RFY-KNN) and boost (RFY-BST2) fore-
casts. The results for linear recursive (REC-LIN) and direct (DIR-LIN) forecasts are
also included. 88

5.3 NAR DGP. MSE decomposition of rectify (RFY-KNN) and boost (RFY-BST2) forecasts.
The results for linear recursive (REC-LIN) and direct (DIR-LIN) forecasts are also
included. 89

5.4 AR DGP. MSE decomposition of rectify forecasts (RFY-KNN). The results for recur-
sive (REC) and direct (DIR) forecasts with the LIN, MLP and KNN models are also
included. 91

5.5 AR DGP. MSE decomposition of boost forecasts (RFY-BST2). The results for recursive
(REC) and direct (DIR) forecasts with the LIN, MLP and BST2 models are also
included. 92

5.6 STAR DGP. MSE decomposition of rectify forecasts (RFY-KNN). The results for
recursive (REC) and direct (DIR) forecasts with the LIN, MLP and KNN models are
also included. 93

5.7 STAR DGP. MSE decomposition of boost forecasts (RFY-BST2). The results for
recursive (REC) and direct (DIR) forecasts with the LIN, MLP and BST2 models are
also included. 94

5.8 NAR DGP. MSE decomposition of rectify forecasts (RFY-KNN). The results for
recursive (REC) and direct (DIR) forecasts with the LIN, MLP and KNN models are
also included. 95

5.9 NAR DGP. MSE decomposition of boost forecasts (RFY-BST2). The results for
recursive (REC) and direct (DIR) forecasts with the LIN, MLP and BST2 models are
also included. 95

5.10 AR DGP. MSE decomposition of recursive linear forecasts (REC-LIN), rectify fore-
casts (RFY-KNN), boost forecasts (RFY-BST2), and averaging (AVG) forecasts with
LIN, MLP, KNN and BST2 models. 97

5.11 AR DGP. The MSE of REC-LIN, AVG-LIN-KNN, RFY-KNN, AVG-LIN-BST2 and
RFY-BST2 is decomposed into noise (in grey), bias (in cyan) and variance (in yel-
low) components. The stacked area plots show the relative contribution of each
component to the total MSE over the forecast horizon. 98

5.12 STAR DGP. MSE decomposition of recursive linear forecasts (REC-LIN), rectify
forecasts (RFY-KNN), boost forecasts (RFY-BST2), and averaging (AVG) forecasts
with LIN, MLP, KNN and BST2 models. 99

5.13 STAR DGP. The MSE of REC-LIN, AVG-LIN-KNN, RFY-KNN, AVG-LIN-BST2 and
RFY-BST2 is decomposed into noise (in grey), bias (in cyan) and variance (in yel-
low) components. The stacked area plots show the relative contribution of each
component to the total MSE over the forecast horizon. 99

6.1 AR DGP. MSE decomposition of direct multi-horizon strategies with the MLP model. 119

187

Machine learning strategies for multi-step-ahead
time series forecasting

6.2 AR DGP. MSE decomposition of direct multi-horizon strategies with the KNN model. 120

6.3 AR DGP. MSE decomposition of recursive multi-horizon strategies with the MLP
model. 121

6.4 AR DGP. MSE decomposition of recursive multi-horizon strategies with the KNN
model. 122

6.5 STAR DGP. MSE decomposition of direct multi-horizon strategies with the MLP
model. 123

6.6 STAR DGP. MSE decomposition of direct multi-horizon strategies with the KNN
model. 124

6.7 STAR DGP. MSE decomposition of recursive multi-horizon strategies with the MLP
model. 125

6.8 STAR DGP. MSE decomposition of recursive multi-horizon strategies with the KNN
model. 126

7.1 Photo of the eight winning teams members for the Global Energy Forecasting Com-
petition 2012 (GEFCOM 2012) taken at the IEEE PES GM meeting in Vancouver,
Canada. 132

7.2 Average demand for each zone. 135

7.3 Hourly demand (GW) for Zone 9, an industrial customer load. 136

7.4 Hourly demand (GW) for Zone 18. 137

7.5 Hourly demand (GW) for one month for Zone 18 from Sunday 18 September 2005
to Monday 17 October 2005. 138

7.6 Hourly temperatures for 11 weather stations from the first hour of 1 January 2004 to
the sixth hour of 30 June 2008. 139

7.7 Total demand plotted against the time of year. The smoothed mean demand is
shown as a red line. 140

7.8 Average total demand (GW) by month and day of week. 141

7.9 Boxplots of total demand by day of week. 141

7.10 Boxplots of demand by time of day for Monday–Friday. 142

7.11 Boxplots of demand by time of day for Saturday–Sunday. 142

7.12 Hourly demand (GW) plotted against temperature (degrees Celsius) for Zone 18 and
station 9. 143

7.13 Current demand plotted against lagged demand for different lags for Zone 18. . . . 144

7.14 Hourly demand (GW) for Zone 4 with outliers. 145

7.15 Hourly demand (GW) for Zone 10 with a big jump in demand. 145

7.16 Root mean square error (RMSE) over the testing week using real temperature (in
blue) and forecasted temperature (in red). The sites are ranked according to the
RMSE when using real temperature. 146

7.17 Forecasts of temperature for the eleven stations. 152

188

Machine learning strategies for multi-step-ahead
time series forecasting

7.18 Root mean squared error (RMSE) obtained for each zone on the testing week. 153

7.19 M = 500 boosting iterations is the best in terms of cross-validation. 154

7.20 Relative importance of the five first variables on the demand for different times of
the day. Demand variables are colored in green, temperature variables in blue and
calendar variables in red. 155

7.21 Forecasts for zone 21 for the eight in-sample weeks and the out-of-sample week. . 156

A.1 Four time series from the M3 forecasting competition. 178

A.2 Four time series from the NN5 forecasting competition. 179

B.1 Four simulated time series from the AR DGP. 181

B.2 Four simulated time series from the NAR DGP. 182

B.3 Four simulated time series from the STAR DGP. 183

189

List of Tables

5.1 M3 competition. SMAPE and MASE forecast accuracy measures for rectify (RFY-
KNN) and boost forecasts (RFY-BST2) as well as recursive (REC) and direct (DIR)
forecasts with LIN, KNN, MLP and BST2 models. 103

5.2 NN5 competition. SMAPE and MASE forecast accuracy measures for rectify forecasts
(RFY-KNN) and boost forecasts(RFY-BST2) as well as recursive (REC) and direct
(DIR) forecasts with LIN, KNN, MLP and BST2 models. 104

5.3 M3 competition. SMAPE and MASE forecast accuracy measures for rectify forecasts
(RFY-KNN) and boost forecast (RFY-BST2) as well as averaging forecasts (AVG) with
LIN, KNN, MLP and BST2 models. 105

5.4 NN5 competition. SMAPE and MASE forecast accuracy measures for rectify forecasts
(RFY-KNN) and boost forecasts (RFY-BST2) as well as averaging forecasts (AVG)
with LIN, KNN, MLP and BST2 models. 105

6.1 Summary of single-horizon and multi-horizon strategies. 115

6.2 M3 competition. SMAPE and MASE forecast accuracy measures for direct multi-
horizon strategies with the MLP model. 124

6.3 NN5 competition. SMAPE and MASE forecast accuracy measures for direct multi-
horizon strategies with the MLP model. 125

6.4 M3 competition. SMAPE and MASE forecast accuracy measures for direct multi-
horizon strategies with the KNN model. 126

6.5 NN5 competition. SMAPE and MASE forecast accuracy measures for direct multi-
horizon strategies with the KNN model. 127

6.6 M3 competition. SMAPE and MASE forecast accuracy measures for recursive multi-
horizon strategies with the MLP model. 128

6.7 M3 competition. SMAPE and MASE forecast accuracy measures for recursive multi-
horizon strategies with the KNN model. 128

7.1 Description of all potential predictors. Forecasts are from demand[t-1] to
demand[t+h-1] where h ∈ {1, . . . ,24}. 149

190

	Declaration
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Time series forecasting and machine learning
	1.2 Motivations and aims
	1.3 Contributions
	1.3.1 Publications and conferences
	1.3.2 Research activities
	1.3.3 Software development

	I Overview
	2 Background
	2.1 Learning from data
	2.1.1 Different views and types of learning
	2.1.2 The regression learning problem
	2.1.3 The cure for overfitting
	2.1.4 The learning procedure

	2.2 Learning regression algorithms
	2.2.1 Linear model
	Penalized regression splines (P-Splines)

	2.2.2 Neural networks
	2.2.3 K-Nearest neighbors
	2.2.4 Gradient Boosting

	2.3 Time series forecasting
	2.3.1 Introduction
	2.3.2 Time series decomposition
	2.3.3 The statistical forecasting perspective
	2.3.4 Autoregressive models
	2.3.5 Autoregressive model selection
	2.3.6 Evaluating forecasts accuracy

	3 An overview of strategies for multi-step-ahead time series forecasting
	3.1 Preamble
	3.2 Multi-step forecasting
	3.3 The recursive and direct forecasting strategies
	3.4 Recursive or direct forecasts?
	3.4.1 Linear models
	3.4.2 Nonlinear models

	3.5 Alternative forecasting strategies
	3.5.1 Improving recursive forecasts
	3.5.2 Improving direct forecasts
	3.5.3 Hybrid forecasts

	3.6 Time series forecasting with machine learning
	3.7 Summary and concluding remarks

	II Contributions
	4 Bias and variance analysis for multi-step forecasting
	4.1 Introduction
	4.2 Mean squared multi-step forecast error decomposition
	4.2.1 Further decompositions

	4.3 Methodology
	4.3.1 Theoretical analysis for two-step ahead forecasts
	4.3.2 Monte Carlo simulations for h-step ahead forecasts
	Data generating processes
	Bias and variance estimation
	Model selection and estimation

	4.4 Analysis of the recursive and direct strategies
	4.4.1 Scenario A: Linear model and linear DGP
	4.4.2 Scenario B: Linear model and nonlinear DGP
	4.4.3 Scenario C: Nonlinear model and linear DGP
	4.4.4 Scenario D: Nonlinear model and nonlinear DGP
	4.4.5 Summary

	4.5 Concluding remarks

	5 Multi-stage forecasting strategies
	5.1 Introduction
	5.2 Multi-stage forecasting strategies
	5.3 Bias and variance analysis
	5.3.1 Scenario A: Linear model and linear DGP
	5.3.2 Scenario B: Linear model and nonlinear DGP
	5.3.3 Scenario C: Nonlinear model and linear DGP
	5.3.4 Scenario D: Nonlinear model and nonlinear DGP
	5.3.5 Averaging strategies
	5.3.6 Summary

	5.4 Real-data experiments
	5.5 Concluding remarks

	6 Multi-horizon forecasting strategies
	6.1 Introduction
	6.2 Related work
	6.3 The multi-horizon strategies
	6.3.1 Implementation

	6.4 Bias and variance analysis
	6.5 Real-data experiments
	6.6 Concluding remarks

	7 The Global Energy Forecasting Competition 2012
	7.1 Introduction
	7.2 The load forecasting track
	7.3 Methodology of the TinTin team
	7.3.1 Data analysis and preprocessing
	7.3.2 Forecasting methodology
	7.3.3 Model specification
	Calendar effects
	Temperature effects
	Lagged demand effects

	7.3.4 Model estimation
	7.3.5 Model analysis

	7.4 Concluding remarks

	8 Conclusions and directions for future works
	8.1 Limitations and future work

	A Real-world experiments
	A.1 Time series data
	A.1.1 The M3 competition data
	A.1.2 The NN5 competition data

	A.2 Methodology

	B Simulated time series

